
Volume IV, Issue II, February 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 122

A Survey on Optimal Path Finding Algorithms for

Pursuing a Moving Target

Renoy Zachariah
1
, Rahul Jadhav

2
, Rohit Mishra

3
, Prem Kishan

4

Computer Department, University of Pune/ Sinhgad Institute of Technology Lonavla

Abstract— Path finding algorithms are widely used to find the

shortest optimal path from a starting point to a destination

point. The complexity of such an algorithm greatly depends on

whether the target is in motion while the optimal path is being

calculated or if the target is static. Finding the optimal path

wherein the hunter and prey are stationary is easy, however

pursuing a moving target is difficult as it poses challenges such

as search space optimization, limited computational resources,

partial knowledge about the environment and real time

response. There has been a lot of research in this regard, each

following a different approach towards finding the optimal

path. In this paper we present an overview of the different

approaches.

Keywords—AI, Moving-target pursuit, path finding, A* search,

optimisation

I. INTRODUCTION

t its core, any path finding method starts by searching a

graph by starting at one vertex and exploring it‟s

adjacent nodes. This is repeated with the adjacent nodes

until the destination node is reached. This path thus found is

usually the shortest route to the destination. Two primary

problems of pathfinding are to find a path between two

nodes in a graph and to find the optimal shortest path. Basic

algorithms such as Depth first and Breadth first search

address the former problem by exhausting the possibilities;

processing starts from the given node, iterating over all

possible paths until the destination is reached.

In any path finding algorithm there is a hunter and a

prey. These algorithms could be categorized into two parts

based on whether the prey is stationary or in

motion.However there are two main approaches using which

we find the optimal path, they are static and dynamic. In a

static algorithm information about the environment is known

prior to any activity in the environment. This makes it

possible to pre compute values necessary for finding the

optimal path even before the hunter and prey are in motion.

In a dynamic algorithm however, the environment may

change while the computation is in process. An overview of

techniques to find the optimal path in such situations is given

by Leenen et al. [2] Pursuit tasks occur frequently in many

domains. For instance, in computer games human-controlled

agents are often pursued by hostile agents. In cooperative

settings however, it is required that a computer controlled

agent follow the other agents in the world.

Moving target pursuit (MTP) task arises in

numerous domains, such as law enforcement, video games.

MTP poses multiple challenges for several reasons. Firstly,

in real-time scenarios, the time available for planning each

move is limited, for example in video games, several game

designers impose strict limits to maintain a fluid frame-rate.

This frame-rate may differ from one designer to another but

usually they‟re of the order of milliseconds for all path

finding units. Secondly, even though a strategy such as „go to

the target‟s starting position and then repeat all of its moves‟

may guarantee a capture when the pursuers are faster than the

target, we prefer an algorithm where the pursuer outsmarts

the target instead of just following and outrunning it.

II. LITERATURE SURVEY

E. W. Dijkstra in his paper A Note of Two Problems

in connexion with graphs [3] stated two problems wherein he

considered n points (nodes), some or all pairs of which are

connected by a branch; such that the length of each branch is

already given. He stated a restriction wherein at least one

path exists between any two nodes. The first problem dealt

with construction of a tree of minimum total length between

any n nodes. The second problem was to find the path of

minimum total length between any two given nodes in the

graph

Peter Hart, Nils Nilsson and Bertram Raphael of Stanford

Research Institute described an algorithm [4] as an extension

to Edsger Dijkstra‟s 1959 algorithm [3]. This algorithm

known as A* achieves better time performance by using

heuristics. A* uses a BFS (best-first-search) and finds a least-

cost path from a given initial node to a goal node (out of one

or more possible goal nodes). A* traverses the graph by

following a path of lowest expected total cost/distance,

keeping a sorted priority queue of alternate path segments

along the way. As stated above it uses a heuristic cost

function of a node (f(x)) to determine the order in which the

search visits each node in the tree. The cost function is a sum

of two other functions:

(i) The past path cost function (g(x)): the known

distance from the starting node to the current

node x.

(ii) A future path cost function (h(x)): the admissible

„heuristic estimate‟ of the distance from x to the

goal node.

Being an informed search algorithm it first searches the

routes that appear to be most likely to lead towards the

goal. A* also considers the distance already travelled into

account

Scenarios such as route planning for a mobile robot

require finding the lowest-cost path through a graph.

While traversing if the arc costs change then this results in

A

Volume IV, Issue II, February 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 123

the replanning of the remainder of the path. A sensor-

equipped mobile robot having incomplete information

about its environment may work in this manner. As the

sensors read additional data about the environment, the

robot can revise its plan to reduce the total cost of the

traversal. While the traversal path is being replanned, the

robot could either move in another direction or wait for

the correct path to be compute. The Dynamic a* (D*)

algorithm finds optimal traversal paths in real-time by

incrementally repairing path to the robot‟s state as new

information is discovered. Anthony Stenz in his paper

“The focussed D* algorithm for real-time replanning[5]

proposed an extension to the D* algorithm in which the

total time required for the initial path calculation and the

subsequent replanning operations are significantly

reduced. This extension to the original d* algorithm allow

for full generalization of the A* for dynamic

environments, wherein the arc costs change while

traversing the solution path

The modelling of problems in terms of constraints

has the advantage of a natural, declarative formulation. A

CSP formulation of a problem states what must be

satisfied, without specifying how it should be satisfied. It

consists of a set of variables, and a set of constraints. Each

constraint is defined over a subset of the set of variables.

Louise Leenen and Alex Terlunen in their paper [1] used a

CSP approach to solve the Military Unit Path Finding

Problem (MUPFP). In which the problem is to find a path

from a starting point to a destination where a military unit

has to move or be moved, safely whilst avoiding obstacles

and threats and minimising the path cost in a digital

representation of the actual terrain. Leenen and Alex

proposed an algorithm that uses a heuristic to focus the

search for an optimal path. Since existing approaches used

to solve the path planning problems focussed on

combining the path costs with various other criteria such

as obstacle avoidance. The authors approach is to optimize

only the path costs while ensuring that other criteria such

as safety requirements are met by adding constraints. The

author‟s approach is based on the algorithm originally

proposed by Stenz [6] . The CSP approach is to optimise

the path costs while ensuring that certain other criteria

such as safety requirements are met. The objective

function used is a pure cost function. A constraint based

approach is adopted with a clear distinction between the

goal of obtaining an optimal path cost and satisfying

safety measures. Constraint programming approach is

followed as it allows flexibility in terms of modelling

different constraints. If a new requirement has to be met, it

can be done by adding a suitable constraint or modifying

the existing constraint to model the new problem

S Koenig and M Likhachev in their paper [7]

described a way in which the search operation could be

performed in real-time since characters in real time

computer games needed to move smoothly. The paper

described a way of speeding up the repeated A* searches

having the same goal states, it did this by updating the

heuristics between A* searches. This technique is then

used to develop a novel real time heuristic based search

method called as Real Time Adaptive A*, this algorithm

can choose local searches in a fine-grained way. It quickly

updates the values of all states in its local search space.

Experiments showed that following this technique allows

RTAA* to follow smaller cost trajectories for given time

limits per search episode

Pursuing a moving target poses as one of the most

challenging problems occurring frequently all the while

consuming computational resources ineffectively. The

artificial intelligence engine in these environments is

responsible for delating hostile agents to plan their pursuit

paths over large game maps, this is in order to chase the

other escaping weak agents despite being bounded by

constraints such as real time interactivity, sense scope,

moving speed, avoiding obstacles and target adversarial

escaping strategy. Dave C Pottinger in his paper [8]

showed that in small scale games such as Age of Empires

2 (Ensemble Studios 1999) 61% - 70% of the simulation

time was spent in path finding, most of which was utilized

for pursuing moving targets.

Sven Koenig in his article [9] categorized the real-

time search or local search into an agent centered search.

He stipulated that agent-centered search methods involve

interleaving the planning and execution phases and restrict

planning to the part of the domain around the current state

of the agent. An example could be the current location of a

mobile robot or the current board position of a game. He

stated that such methods could execute actions in the

presence of time constraints and are often associated with

a small sum of execution and planning cost, this is

because they allow agents to gather information early in

the non-deterministic domain, this reduces the amount of

planning required for unencountered situations. He

demonstrated the design and properties of several agent-

centered search methods, focussing on robot exploration

and localization.

Real time heuristic search poses as a challenging

variant of agent-centered search as the agent‟s planning

time per action is bounded by a constraint independent of

the size of the problem [10]. Path finding in modern

computer games pose such restrictions as a large number

of units must plan their paths simultaneously over a map.

Search algorithms such as A*, IDA*, D*, ARA*, AD*

cannot be considered as real time and they may lose

completeness when a constant bound is imposed on per

action planning time. Real time search algorithms on the

other hand retain completeness but tend to produce

unacceptable suboptimal solutions. Dynamic control in

real time heuristic search [] extends the real time search

algorithms with an automated mechanism for dynamic

depth and subgoal selection. These new algorithms find

path within 7% of optimal while on a average expanding

roughly a single state per action.

S Koenig, M Likhachev and X Sun, in their paper

[11] study moving target search where an agent (hunter)

has to catch a moving target (prey). This is in a scenario in

which the agent is unaware about the terrain initially but

can observe it within a certain sensor range around itself.

Volume IV, Issue II, February 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 124

The strategy used by them made the agent move on a

shortest presumed unblocked path towards the target.

They studied how the agent could find the shortest path

faster by performing repeated A* searches. They extend

the Adaptive A* search method [7] to moving target

search and demonstrate that the resulting Moving Target

(MT) Adaptive A* is faster than isolated A* searches.

They demonstrated in their experiments that MTAA* is

faster than D* Lite by one order of magnitude for moving

target search in known and unknown maps/mazes. This is

if both the search methods use the same informed

heuristics.

X Sun, S Koenig and W Yeoh in their paper [12]

proposed an algorithm Generalized Fringe Retrieving A*

which uses the incremental search algorithm Fringe

Retrieving A* to solve moving target search problems on

arbitrary graphs. They use an incremental search method

in which the hunter follows a cost minimal path from its

current state to the target‟s current state and replans a new

path whenever the target moves off the path. This process

is repeated until the hunter is in the same state as the target

at which point the target is caught. FRA* is an

incremental version of A*, it repeatedly finds shortest path

for moving targets in a known grid world. It does this by

repeatedly transforming the previous search tree to the

current search tree [13]. The algorithm starts A* with

OPEN and CLOSED lists obtained from previous

searches. It uses geometric properties specific to two-

dimensional grids, due to which they cannot be used for

arbitrary graphs. The authors generalize it to a

Generalized FRA* (G-FRA*) which helps solve moving

target search problems on arbitrary graphs.

In their paper Moving Target Pursuit Algorithm

Using Improved Tracking Strategy [1] the authors propose

a novel tracking algorithm called Target Automatic

Optimization Moving Target Pursuit (TAO-MTP) to

effectively address the challenges in problems consisting

of single hunter and single prey. In that TAO-MTP uses a

queue to store the prey‟s trajectory and at the same time

runs Real Time Adaptive A* (RTAA*) [7] to reach the

optimal position which is updated periodically within

limited steps in the trajectory. This helps in minimizing

the overall pursuit cost. The algorithm works by making

the hunter move to any position in the explored trajectory

(this position may or may not be the optimal position) and

then moves along the trajectory to catch the prey. The

authors stated that as long as the hunter‟s moving speed is

greater than that of the prey and it‟s sense scope is large, it

will eventually catch the prey

CONCLUSION

This paper is a survey on different path finding, moving
target pursuit algorithms and methodologies that were
proposed by researchers for better development in the field
of Artificial Intelligence – Path finding. Each researcher
makes use of a previously stated algorithm and improves on
it. In future we propose to use the approaches specified in [1]
[2] [7] to devise a novel moving target pursuit algorithm that
finds the optimal shortest path every time and handles

obstacles in real time.

REFERENCES

[1] Mingliang Xu, Zhigeng Pan, Hongxing Lu, Yangdong Ye, Pei Lv,

and Abdennour El Rhalibi. “Moving Target Pursuit Algorithm Using
Improved Tracking Strategy.” IEEE Transactions on Computational
Intelligence and AI in Games, VOL. 2, NO. 1, MARCH 2010

[2] L. Leenen, A. Terlunen, and W. le Roux, “A Constraint Programming
Solutionfor the Military Unit Path Finding Problem”, ser. Mobile
IntelligentAutonomous Systems: Recent Advances. Bota Raton,
USA: Taylor &Francis Group, 2012.

[3] E. W. Dijkstra, “A note on two problems in connexion with
graphs,”NumerischeMathematik, vol. 1, pp. 269–271, 1959

[4] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the
heuristicdetermination of minimum cost paths,” IEEE Trans. Syst.
Sci. Cybern.,vol. 4, no. 2, pp. 100–107, Jul. 1968

[5] A. Stenz, “The focused D* algorithm for real-time replanning,” in
Proc.Int. Joint Conf. Artif. Intell., 1995, pp. 652–1659

[6] A. Stentz, “Optimal and efficient path planning for partially-
knownenvironments,” in Proceedings of the IEEE International
Conference onRobotics and Automation (ICRA), vol. 4, 1994, pp.
3310–3317

[7] S. Koenig, M. Likhachev “Real-Time Adaptive A*” in Proc. Int.Joint
Conf. Autonom. Agents Multiagent Syst., 2006, pp. 281–288

[8] D. C. Pottinger, “Terrain analysis in realtime strategy games,” in
Proc.Comput. Game Develop. Conf., 2000, pp. 763–782

[9] S. Koenig, “Agent-centered search,” AI Mag., vol. 22, no. 4, pp.109–
132, 2001

[10] V. Bulitko, M. Lˇustrek, J. Schaeffer, Y. Bjornsson, and S.
Sigmundarson,“Dynamic control in real-time heuristic search,” J.
Artif.Intell. Res., vol. 32, pp. 419–452, 2008

[11] S. Koenig, M. Likhachev, and X. Sun, “Speeding up moving-
targetsearch,” in Proc. 6th Int. Joint Conf. Autonom. Agents
Multiagent Syst.,Honolulu, HI, 2007, article no. 188

[12] S.Koenig, X. Sun, and Y.William, “Generalized adaptive A*,” in
Proc.7th Int. Conf. Autonom. Agents Multiagent Syst., 2008, pp. 469–
476

[13] X. Sun, W. Yeoh, and S. Koenig, “Efficient incremental search
formoving target search,” in Proc. Int. Joint Conf. Artif. Intell., 2009,
pp.615–620

