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Abstract – In modern VLSI designs, power consumed by 

clocking is one of the major issue. Hence, in this paper propose 

an algorithm for reducing the power consumption by replacing 

some flip-flops with fewer multi-bit flip-flops without affecting 

the performance of the original circuit. The flip-flop 

replacement leading to violation of timing and placement 

capacity constraints. Some techniques are proposed to avoid 

this problem. Manhattan distance and co-ordinate 

transformation used to identify those flip-flops that can be 

merged and their legal regions. Then, a combination table is 

built to enumerate all possible combinations. Finally, the flip-

flops are merged in hierarchical manner. According to the 

experimental results, our algorithm significantly reduces clock 

power by 20-30% and besides power reduction minimizing the 

total wire length is also considered.  

 

KEY WORDS – Clock power, multi-bit flip-flop, Manhattan 

distance, merging. 

 

I. INTRODUCTION 
 

 clock system and a logic part consumes dominant part 

of the total chip power. The clock system itself 

consumes 20–45% of the chip power. In this clock system 

power, 90% is consumed by the flip-flops themselves [10]. 

This is due to the high switching activity. 

Pclk = Cclk V
2

dd fclk 

 

Where,  Pclk  is clock power, fclk is the clock frequency, 

Vdd  is the supply voltage, and Cclk  is the switching 

capacitance including the gate capacitance of flip-flops 

controlled by the clock signal, the interconnect capacitance 

of the clock network, and the capacitance associated with 

the buffers/inverters used in the clock network. Reducing 

the power consumption not only can enhance battery life but 

also can avoid the overheating problem, which would 

increase the difficulty of packaging or cooling [1], [2]. In 

modern VLSI designs, power consumed by clocking has 

taken a major part of the whole design especially for those 

designs using deeply scaled CMOS technologies [3]. 

Several methodologies [4], [5] have been proposed to 

reduce the power consumption of clocking. During clock 

tree synthesis, less number of flip-flops means less number 

of clock sinks. 

 Besides, once more smaller flip-flops are replaced 

by larger multi-bit flip-flops, device variations in the 

corresponding circuit can be effectively reduced. As CMOS 

technology progresses, the driving capability of an inverter-

based clock buffer increases significantly. The driving 

capability of a clock buffer can be evaluated by the number 

of minimum-sized inverters that it can drive on a given 

rising or falling time 

             

A. Existing System  

Yan and Chen [7], Chang et al. [8], and Wang et 

al. [9] postponed this task to post-placement to further 

consider the timing and even routing issues. Yan and Chen 

[7] analyzed the timing-safe region for each flip-flop and 

then constructed an intersection graph to record the pair 

wise overlapping of these regions. They reduced MBFF 

clustering to minimum clique partitioning and solved it by 

iteratively merging flip-flops with fewest compatible flip-

flops. However, they assumed the available bit numbers of 

the given MBFF library are contiguous and unlimited.

  

Chang et al. [6] proposed the problem of using 

multi-bit flip-flops to reduce power consumption in the 

post-placement stage. They use the graph-based approach to 

deal with this problem. In a graph, each node represents a 

flip-flop. If two 

flip-flops can be replaced by a new flip-flop without 

violating timing and capacity constraints, they build an edge 

between the corresponding nodes. After the graph is built, 

the problem of replacement of flip-flops can be solved by 

finding an m-clique in the graph. The flip-flops 

corresponding to the nodes in an m-clique can be replaced 

by an m-bit flip-flop. They use the branch-and-bound and 

backtracking algorithm [8] to find all m-cliques in a graph. 

Because one node (flip-flop) may belong to several m-

cliques (m-bit flip-flop), they use greedy heuristic algorithm 

to find the maximum independent set of cliques, which 

every node only belongs to one clique, while finding m-

cliques groups. However, if some nodes correspond to k-bit 

flip-flops that k _ 1, the bit width summation of flip-flops 

corresponding to nodes in an m-clique, j , may not equal m. 

If the type of a j -bit flip-flop is not supported by the library, 

it may be time-wasting in finding impossible combinations 

of flip-flops. 

 

 

 

A 
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II. OUR ALGORITHM 

 

Our design flow can be roughly divided into three 

stages. In the beginning, we have to identify a legal 

placement region for each flip-flop. First, the feasible 

placement regions of a flip-flop associated with different 

pins are found based on the timing constraints defined on 

the pins. Then, the legal placement region of the flip-flop 

can be obtained by the overlapped area of these regions.  

The overlapped area can be identified more easily 

if we can transform the coordinate system of cells to get 

rectangular regions. In the second stage, we would like to 

build a combination table, which defines all possible 

combinations of flip-flops in order to get a new multi-bit 

flip-flop provided by the library. The flip-flops can be 

merged with the help of the table. 

 

Fig. 1 Algorithm of Flow chart 

After the legal placement regions of flip-flops are 

found and the combination table is built, we can use the 

third stage is to merge flip-flops. To speed up our program, 

we will divide a chip into several bins and merge flip-flops 

in a local bin. However, the flip-flops in different bins may 

be merge-able. Thus, we have to combine several bins into a 

larger bin and repeat this step until no flip-flop can be 

merged anymore. 

A.  Identify Mergable Flip-Flops 

Identify the mergable flip-flops can be estimated 

by the shape of a feasible placement region in the IC 

associated with one pin pi connecting to a flip-flop fi would 

be diamond region. Since there may exist several pins 

connecting to fi, the legal placement region of fi are the 

overlapping area of several regions. The replacement of 

some flip-flops with multi-bit flip-flops  would change the 

routing length of the nets that connect to a flip-flop, it 

inevitably changes timing of some paths. 

Manhattan distance                 

To avoid that timing is affected after the replacement, 

the Manhattan distance between pin pi and flip-flop fj cannot 

be longer than the given constraint S(pi ) defined on the pin 

pi [i.e., M(pi , fj ) ≤ S(pi )]. Since there may exist several 

pins connecting to fi , the legal placement region of fi are the 

overlapping area of several regions.  

The distance between two points in a grid based on a 

strictly horizontal and/or vertical path, as opposed to the 

diagonal or distance. The Manhattan distance is the simple 

sum of the horizontal and vertical components, whereas the 

diagonal distance might be computed by applying the 

Pythagorean theorem 

Then, we can find which flip-flops are merge-able 

according to whether their feasible regions overlap or not. In 

Fig. 2, and the function DIS_X( f1, f2) and (DIS_Y( f1, f2)) 

calculates the distance between centers of R( f1) and R( f2) in 

x-direction (y-direction). 

 

Fig. 2 Overlapping region of two diamond shapes. (b) Rectangular shapes 

obtained by rotating the diamond shapes in (a) by 45°. 

Since the feasible placement region of each flip-

flop can be easily identified after the coordinate 

transformation, we simply use (1) and (2) to determine 

whether two flip-flops overlap or not. 

DIS_X(f1,f2) < ½ (W(f1) + W(f2)) …………. (1) 

DIS_Y(f1,f2) < ½ (H(f1) + H(f2)) ………….  (2) 

          Where,  W( f1) and H( f1) [W( f2) and H( f2)] denote 

the width and height of R( f1) [R( f2)], respectively. 

B. Build A Combinational Table  

If we want to replace several flip-flops by a new 

flip-flop fi
’
, we have  to make sure that the new flip-flop fi’ 

is provided by the library L when the feasible regions of 

these flip-flops overlap. 

  Now a combination table is to be built, which 

records all possible combinations of flip-flops to get feasible 

flip-flops before replacements. Thus, we can gradually 

replace flip-flops according to the order of the combinations 

of flip-flops in this table.  

Step1: Initialize the Library and the Combination Table 
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Consider a library L that provides two types of flip-

flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and bmax = 

4), in Fig. 3(a). We first initialize two combinations n1 and 

n2 to represent these two types of flip-flops in the table T 

[see Fig. 3(a)]. 

 

Fig. 3(a) Initialize the library L and the combination table T. 

Step2:  Insert Pseudo Type 

                Next, the function Insert Pseudo Type is 

performed to check whether the flip-flop types with bit 

widths between 1 and 4 exist or not. Thus, two kinds of flip-

flop types whose bit widths are 2 and 3 are added into L, 

and all types of flip-flops in L are sorted according to their 

bit widths [see Fig. 3(b)]. 

 

Fig. 3(b) Pseudo types are added into L, and the corresponding binary tree 
is also build for each combination in T. 

Step3: create New Combination n3 

                    By combining two1-bit flip-flops in the first 

and combination of two n1 and make  a new Combination 

n3 can be obtained [see Fig. 3(c)]. 

 

Fig. 3(c) New combination n3 is obtained from combining two n1s 

Step4:  create New Combination n4 and n5  

Similarly, we can get a new combination n4 (n5) 

by combining n1 and n3(two n3’s) [see Fig. 3.3 (d)]. 

Finally, n6 is obtained by combing n1 and n4. 

 

Fig. 3(d) New combination n4 is obtained from combining n1 and n3, and 

the combination n5 is obtained from combining two n3s. 

Step5: create New Combination n6 

All possible combinations of flip-flops are 

shown in Fig 3(e). Among these combinations, n5 and n6 

are duplicated since they both represent the same condition, 

which replaces four 1-bit flip-flops by a 4-bit flip-flop. 

 To speed up the process, n6 is deleted from T 

rather than n5 because its height is larger. After this 

procedure, n4 becomes an unused combination [see Fig. 

3(e)] since the root of binary tree of n4 corresponds to the 

pseudo type, type3, in L and it is only included in n6. 

 

Fig. 3(e) New combination n6 is obtained from combining n1 and n4. 

Step6: Deleting Unused Combination 

         After deleting n6, n4 is also need to be deleted. The 

last combination table T is shown in Fig. 3.3 (f). 
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Fig. 3(f) Last combination table is obtained after deleting the unused 

combination in (e). 

C. Merge Flip-Flops 

In this module, more number of flip-flops can be 

merged into multi bit flip-flops. Fig. 2.5 shows an example 

of merging two 1-bit flip-flops into one 2-bit flip-flop. If we 

replace the two 1-bit flip-flops as shown in Fig. 4(a) by the 

2-bit flip-flop as shown in Fig. 4(b), the total power 

consumption can be reduced because the two 1-bit flip-flops 

can share the same clock buffer. 

 

Fig 4(a) Two 1-bit flip-flops (before merging), 

4(b) 2-bit flip-flop (after merging). 

However, the locations of some flip-flops would be 

changed after this replacement, and thus the wire lengths of 

nets connecting pins to a flip-flop are also changed. 

To avoid violating the timing constraints, we 

restrict that the wire lengths of nets connecting pins to a 

flip-flop cannot be longer than specified values after this 

process. Besides, to guarantee that a new flip-flop can be 

placed within the desired region, we also need to consider 

the area capacity of the region. 

Region Partition 

             To speed up our problem, we divide the whole chip 

into several sub regions. By suitable partition, the 

computation complexity of merging flip-flops can be 

reduced significantly. As shown in Fig. 5, we divide the 

region into several sub regions, and each sub region 

contains six bins, where a bin is the smallest unit of a sub 

region. 

 

Fig. 5 Region partition with six bins in one sub region. 

Replacement of Flip-Flops In Each Sub-region 

               Before illustrating the procedure to merge flip-

flops, first an equation is given to measure the quality if two 

flip-flops are going to be replaced by a new flip-flop as 

follows: 

cost = routing_length − α ×√(available_area) 

               where,  routing_length denotes the total routing 

length between the new flip-flop and the pins connected to 

it, and available_ area represents the available area in the 

feasible region for placing the new flip-flop. α is a 

weighting factor. The cost function includes the term 

routing_length to favor a replacement that induces shorter 

wire length. Besides, if the region has larger available space 

to place a new flip-flop, it implies that it has higher 

opportunities to combine with other flip-flops in the future 

and more power reduction. 

Step1: Sets of Flip-Flops Before Merging 

           A library containing three types of flip-flops (1-, 2-, 

and 4-bit), we first build a combination table T as shown in 

Fig. 6(a). 

 

Fig 6(a) Sets of flip-flops before merging 
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Step2:  Replacing  2-Bit Flip-Flop f3. 

                 In the beginning, the flip-flops with various types 

are, respectively, linked below n1, n2, and n3 in T according 

to their types. Suppose we want to form a flip-flop in n4, 

which needs two 1-bit flip-flops according to the 

combination table. Each pair of flip-flops in n1 are selected 

and checked to see if they can be combined If there are 

several possible choices, the pair with the smallest cost 

value is chosen to break the tie. In Fig. 5(a), f1 and f2 are 

chosen because their combination gains the smallest cost. 

Thus, we add a new node f3 in the list below n4, and then 

delete f1 and f2 from their original list [see Fig. 6(b)]. 

 

Fig 6(b) Two 1-bit flip-flops, f1 and f2, are replaced by the 2-bit flip-flop 

f3. 

Step3: Replaced 2-Bit Flip-Flop f6. 

                 Similarly, f4 and f5 are combined to obtain a new 

flip-flop f6, and the result is shown in Fig. 6 (c) 

. 

Fig 6(c) Two 1-bit flip-flops, f4 and f5, are replaced by the 2-bit flip-flop 

f6. 

Step4: Replacing 4-Bit Flip-Flop f9 

                        After all flip-flops in the combinations of 1-

level trees (n4 and n5) are obtained as shown in Fig. 6(d), 

we start to form the flip-flops in the combinations of 2-level 

trees (n6, and n7). 

 

Fig 6(d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit flip-flop 

f9. 

Step5: Replacing 4-bit flip-flop f1       

          In  Fig. 3.6 (e), there exist some flip-flops in the lists 

below n2 and n4, and we will merge them to get flip-flops 

in n6 and n7, respectively. Suppose there is no overlap 

region between the couple of flip-flops in n2 and n4. It fails 

to form a 4-bit flip-flop in n6. Since the 2-bit flip-flops f3 

and f6 are merge-able, we can combine them to obtain a 4-

bit flip-flop f10 in n7. 

  

Fig 6(e) Two 2-bit flip-flops, f3 and f6, are replaced by the 4-bit flip-flop 

f10. 

Step6: Sets of Flip-Flops After Merging 

               Finally, there exists no couple of flip-flops that can 

be combined further, the procedure Finishes as shown in 

Fig. 6(f). 

  

Fig 6(f) Sets of flip-flops after merging. 
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Advantages of Merging Multi Bit Flip-Flops 

 Smaller design area due to shared clock drivers and 

clock gating cells. 

 Less delay and power of the clock network due to 

fewer clock sinks and smaller capacitive load on 

the clock net; 

 Controllable clock skew because of common clock 

. 

 The required routing resource for a scan chain is 

greatly reduced because of fewer cells in a scan 

chain. 

 

 

III. RESULTS AND DISCUSSION 

 

SIMULATION OF TWO 1-BIT FLIP-FLOP 

 

Fig. 8(a) Two single bit flip-flop output 

Figure the simulation result of two 1-bit flop-flops. 

It requires two clock pulses to operate the flip-flop.  When 

clk1 is enable, the input d1 is assign to the output q1. 

Otherwise, it stable in previous state. When clk2 is enable, 

the input d2 is assign to the output q2. Otherwise, it stable in 

previous state. 

 

SIMULAION OF 2-BIT FLIP-FLOP OUTPUT 

 

Fig. 8(b) double bit flip-flop simulation output 

Figure shows the simulation result of 2-bit flop-

flops. It needs one clock pulses to operate the flip-flop.  

When clk1 is enable, the input d1 is assign to the output q1 

and also d2 is assign to q2. Otherwise, it stable in previous 

state. 

 

SIMULATION OF COMBINATIONAL TABLE 

 

Fig. 8(c) Combinational Table output 

Figure shows the simulation of combinational 

table. It has library and combinational table. Library has 1-

bit and 4-bit flip-flop.  Pseudo type of 2-bit and 4-bit flip-

flops are added to the library. The combinational table 

creates each combinational of flip-flop response of each 

clock cycles. Then. Eliminate unused flip-flops and create 

final table. 

SIMULATION OF MERGING MANY FLIP-FLOPS 

 

Fig 8(d) merging many flip-flops 

Figure shows the simulation of merging many flip-

flops by using one clock pulse. When the clock is enable, 
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the input d1,d2,d3,d4,d5,d6 and d7 is assign to the output 

q1,q2,q3,q4,q5,q6 and q7. Otherwise it remains the previous 

state. 

 

POWER ESTIMATION OF DOUBLE BIT FLIP-FLOP 

 

 
 

Fig 8(e) Power Estimation of Double Bit Flip-Flop 

Figure shows the power Estimation of 2-bit flip-

flop. The total power estimation of 2-bit flip flop is 20mW. 

This is smaller than using two 1-bit flip-flops. In this 2-bit 

flip-flop, we are using 1 clock is used for operating two flip-

flop. Due to sharing clock tree, the power becomes reduced.  

POWER ESTIMATION OF TWO SINGLE BIT FLIP-

FLOP 

 

 
 

Fig 8(f) Power Estimation of Two Single Bit Flip-Flop 
 

Figure shows the power Estimation of two 1-bit 

flip-flop. The total power estimation of  two 1-bit flip flop is 

25mW. This is greater than using 2-bit flip-flops. So, the 2-

bit flip-flop is more benefit-able compared to two 1-bit flip-

flops.   

V. CONCLUSION AND FUTURE WORK 

                This paper has proposed an algorithm for flip-flop 

replacement for power reduction in digital integrated circuit 

design. The procedure of flip-flop replacements is 

depending on the combination table, which records the 

relationships among the flip-flop types. The concept of 

pseudo type is introduced to help to enumerate all possible 

combinations in the combination table. By the guidelines of 

replacements from the combination table, the impossible 

combinations of flip-flops will not be considered that 

decreases execution time. The experimental results show 

that our algorithm can achieve a balance between power 

reduction and wire length reduction. Besides power 

reduction, the objective of minimizing the total wire length 

is also considered. to the cost function. The experimental 

results show that our algorithm can achieve a balance 

between power reduction and wire length reduction.  

In future, the multi bit flips (or) shared clock pulse 

of the IC replaces to double edge triggered multi-bit flip-

flop. It improves the overall performance and power 

consumption. Then, It also reduces the delay greatly. The 

total wire length is also minimized.   
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