
Volume IV, Issue III, March 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 133

Alternative Approach of Low Power Multi Bit

Flip-Flops in Integrated Circuits
M.Santhanaraj

1
, K.Siddharthraju

2
, R.Dhivya Devi

3
, S.Prabahar

4

Assistant Professor-Department of Electronics and communication Engineering,

1,2,3
KPR Institute of Engineering and Technology, Coimbatore.

4
Chandy College of Engineering, Tuticorin

Abstract – In modern VLSI designs, power consumed by

clocking is one of the major issue. Hence, in this paper propose

an algorithm for reducing the power consumption by replacing

some flip-flops with fewer multi-bit flip-flops without affecting

the performance of the original circuit. The flip-flop

replacement leading to violation of timing and placement

capacity constraints. Some techniques are proposed to avoid

this problem. Manhattan distance and co-ordinate

transformation used to identify those flip-flops that can be

merged and their legal regions. Then, a combination table is

built to enumerate all possible combinations. Finally, the flip-

flops are merged in hierarchical manner. According to the

experimental results, our algorithm significantly reduces clock

power by 20-30% and besides power reduction minimizing the

total wire length is also considered.

KEY WORDS – Clock power, multi-bit flip-flop, Manhattan

distance, merging.

I. INTRODUCTION

 clock system and a logic part consumes dominant part

of the total chip power. The clock system itself

consumes 20–45% of the chip power. In this clock system

power, 90% is consumed by the flip-flops themselves [10].

This is due to the high switching activity.

Pclk = Cclk V
2

dd fclk

Where, Pclk is clock power, fclk is the clock frequency,

Vdd is the supply voltage, and Cclk is the switching

capacitance including the gate capacitance of flip-flops

controlled by the clock signal, the interconnect capacitance

of the clock network, and the capacitance associated with

the buffers/inverters used in the clock network. Reducing

the power consumption not only can enhance battery life but

also can avoid the overheating problem, which would

increase the difficulty of packaging or cooling [1], [2]. In

modern VLSI designs, power consumed by clocking has

taken a major part of the whole design especially for those

designs using deeply scaled CMOS technologies [3].

Several methodologies [4], [5] have been proposed to

reduce the power consumption of clocking. During clock

tree synthesis, less number of flip-flops means less number

of clock sinks.

 Besides, once more smaller flip-flops are replaced

by larger multi-bit flip-flops, device variations in the

corresponding circuit can be effectively reduced. As CMOS

technology progresses, the driving capability of an inverter-

based clock buffer increases significantly. The driving

capability of a clock buffer can be evaluated by the number

of minimum-sized inverters that it can drive on a given

rising or falling time

A. Existing System

Yan and Chen [7], Chang et al. [8], and Wang et

al. [9] postponed this task to post-placement to further

consider the timing and even routing issues. Yan and Chen

[7] analyzed the timing-safe region for each flip-flop and

then constructed an intersection graph to record the pair

wise overlapping of these regions. They reduced MBFF

clustering to minimum clique partitioning and solved it by

iteratively merging flip-flops with fewest compatible flip-

flops. However, they assumed the available bit numbers of

the given MBFF library are contiguous and unlimited.

Chang et al. [6] proposed the problem of using

multi-bit flip-flops to reduce power consumption in the

post-placement stage. They use the graph-based approach to

deal with this problem. In a graph, each node represents a

flip-flop. If two

flip-flops can be replaced by a new flip-flop without

violating timing and capacity constraints, they build an edge

between the corresponding nodes. After the graph is built,

the problem of replacement of flip-flops can be solved by

finding an m-clique in the graph. The flip-flops

corresponding to the nodes in an m-clique can be replaced

by an m-bit flip-flop. They use the branch-and-bound and

backtracking algorithm [8] to find all m-cliques in a graph.

Because one node (flip-flop) may belong to several m-

cliques (m-bit flip-flop), they use greedy heuristic algorithm

to find the maximum independent set of cliques, which

every node only belongs to one clique, while finding m-

cliques groups. However, if some nodes correspond to k-bit

flip-flops that k _ 1, the bit width summation of flip-flops

corresponding to nodes in an m-clique, j , may not equal m.

If the type of a j -bit flip-flop is not supported by the library,

it may be time-wasting in finding impossible combinations

of flip-flops.

A

Volume IV, Issue III, March 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 134

II. OUR ALGORITHM

Our design flow can be roughly divided into three

stages. In the beginning, we have to identify a legal

placement region for each flip-flop. First, the feasible

placement regions of a flip-flop associated with different

pins are found based on the timing constraints defined on

the pins. Then, the legal placement region of the flip-flop

can be obtained by the overlapped area of these regions.

The overlapped area can be identified more easily

if we can transform the coordinate system of cells to get

rectangular regions. In the second stage, we would like to

build a combination table, which defines all possible

combinations of flip-flops in order to get a new multi-bit

flip-flop provided by the library. The flip-flops can be

merged with the help of the table.

Fig. 1 Algorithm of Flow chart

After the legal placement regions of flip-flops are

found and the combination table is built, we can use the

third stage is to merge flip-flops. To speed up our program,

we will divide a chip into several bins and merge flip-flops

in a local bin. However, the flip-flops in different bins may

be merge-able. Thus, we have to combine several bins into a

larger bin and repeat this step until no flip-flop can be

merged anymore.

A. Identify Mergable Flip-Flops

Identify the mergable flip-flops can be estimated

by the shape of a feasible placement region in the IC

associated with one pin pi connecting to a flip-flop fi would

be diamond region. Since there may exist several pins

connecting to fi, the legal placement region of fi are the

overlapping area of several regions. The replacement of

some flip-flops with multi-bit flip-flops would change the

routing length of the nets that connect to a flip-flop, it

inevitably changes timing of some paths.

Manhattan distance

To avoid that timing is affected after the replacement,

the Manhattan distance between pin pi and flip-flop fj cannot

be longer than the given constraint S(pi) defined on the pin

pi [i.e., M(pi , fj) ≤ S(pi)]. Since there may exist several

pins connecting to fi , the legal placement region of fi are the

overlapping area of several regions.

The distance between two points in a grid based on a

strictly horizontal and/or vertical path, as opposed to the

diagonal or distance. The Manhattan distance is the simple

sum of the horizontal and vertical components, whereas the

diagonal distance might be computed by applying the

Pythagorean theorem

Then, we can find which flip-flops are merge-able

according to whether their feasible regions overlap or not. In

Fig. 2, and the function DIS_X(f1, f2) and (DIS_Y(f1, f2))

calculates the distance between centers of R(f1) and R(f2) in

x-direction (y-direction).

Fig. 2 Overlapping region of two diamond shapes. (b) Rectangular shapes

obtained by rotating the diamond shapes in (a) by 45°.

Since the feasible placement region of each flip-

flop can be easily identified after the coordinate

transformation, we simply use (1) and (2) to determine

whether two flip-flops overlap or not.

DIS_X(f1,f2) < ½ (W(f1) + W(f2)) …………. (1)

DIS_Y(f1,f2) < ½ (H(f1) + H(f2)) …………. (2)

 Where, W(f1) and H(f1) [W(f2) and H(f2)] denote

the width and height of R(f1) [R(f2)], respectively.

B. Build A Combinational Table

If we want to replace several flip-flops by a new

flip-flop fi
’
, we have to make sure that the new flip-flop fi’

is provided by the library L when the feasible regions of

these flip-flops overlap.

 Now a combination table is to be built, which

records all possible combinations of flip-flops to get feasible

flip-flops before replacements. Thus, we can gradually

replace flip-flops according to the order of the combinations

of flip-flops in this table.

Step1: Initialize the Library and the Combination Table

Volume IV, Issue III, March 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 135

Consider a library L that provides two types of flip-

flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and bmax =

4), in Fig. 3(a). We first initialize two combinations n1 and

n2 to represent these two types of flip-flops in the table T

[see Fig. 3(a)].

Fig. 3(a) Initialize the library L and the combination table T.

Step2: Insert Pseudo Type

 Next, the function Insert Pseudo Type is

performed to check whether the flip-flop types with bit

widths between 1 and 4 exist or not. Thus, two kinds of flip-

flop types whose bit widths are 2 and 3 are added into L,

and all types of flip-flops in L are sorted according to their

bit widths [see Fig. 3(b)].

Fig. 3(b) Pseudo types are added into L, and the corresponding binary tree
is also build for each combination in T.

Step3: create New Combination n3

 By combining two1-bit flip-flops in the first

and combination of two n1 and make a new Combination

n3 can be obtained [see Fig. 3(c)].

Fig. 3(c) New combination n3 is obtained from combining two n1s

Step4: create New Combination n4 and n5

Similarly, we can get a new combination n4 (n5)

by combining n1 and n3(two n3’s) [see Fig. 3.3 (d)].

Finally, n6 is obtained by combing n1 and n4.

Fig. 3(d) New combination n4 is obtained from combining n1 and n3, and

the combination n5 is obtained from combining two n3s.

Step5: create New Combination n6

All possible combinations of flip-flops are

shown in Fig 3(e). Among these combinations, n5 and n6

are duplicated since they both represent the same condition,

which replaces four 1-bit flip-flops by a 4-bit flip-flop.

 To speed up the process, n6 is deleted from T

rather than n5 because its height is larger. After this

procedure, n4 becomes an unused combination [see Fig.

3(e)] since the root of binary tree of n4 corresponds to the

pseudo type, type3, in L and it is only included in n6.

Fig. 3(e) New combination n6 is obtained from combining n1 and n4.

Step6: Deleting Unused Combination

 After deleting n6, n4 is also need to be deleted. The

last combination table T is shown in Fig. 3.3 (f).

Volume IV, Issue III, March 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 136

Fig. 3(f) Last combination table is obtained after deleting the unused

combination in (e).

C. Merge Flip-Flops

In this module, more number of flip-flops can be

merged into multi bit flip-flops. Fig. 2.5 shows an example

of merging two 1-bit flip-flops into one 2-bit flip-flop. If we

replace the two 1-bit flip-flops as shown in Fig. 4(a) by the

2-bit flip-flop as shown in Fig. 4(b), the total power

consumption can be reduced because the two 1-bit flip-flops

can share the same clock buffer.

Fig 4(a) Two 1-bit flip-flops (before merging),

4(b) 2-bit flip-flop (after merging).

However, the locations of some flip-flops would be

changed after this replacement, and thus the wire lengths of

nets connecting pins to a flip-flop are also changed.

To avoid violating the timing constraints, we

restrict that the wire lengths of nets connecting pins to a

flip-flop cannot be longer than specified values after this

process. Besides, to guarantee that a new flip-flop can be

placed within the desired region, we also need to consider

the area capacity of the region.

Region Partition

 To speed up our problem, we divide the whole chip

into several sub regions. By suitable partition, the

computation complexity of merging flip-flops can be

reduced significantly. As shown in Fig. 5, we divide the

region into several sub regions, and each sub region

contains six bins, where a bin is the smallest unit of a sub

region.

Fig. 5 Region partition with six bins in one sub region.

Replacement of Flip-Flops In Each Sub-region

 Before illustrating the procedure to merge flip-

flops, first an equation is given to measure the quality if two

flip-flops are going to be replaced by a new flip-flop as

follows:

cost = routing_length − α ×√(available_area)

 where, routing_length denotes the total routing

length between the new flip-flop and the pins connected to

it, and available_ area represents the available area in the

feasible region for placing the new flip-flop. α is a

weighting factor. The cost function includes the term

routing_length to favor a replacement that induces shorter

wire length. Besides, if the region has larger available space

to place a new flip-flop, it implies that it has higher

opportunities to combine with other flip-flops in the future

and more power reduction.

Step1: Sets of Flip-Flops Before Merging

 A library containing three types of flip-flops (1-, 2-,

and 4-bit), we first build a combination table T as shown in

Fig. 6(a).

Fig 6(a) Sets of flip-flops before merging

Volume IV, Issue III, March 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 137

Step2: Replacing 2-Bit Flip-Flop f3.

 In the beginning, the flip-flops with various types

are, respectively, linked below n1, n2, and n3 in T according

to their types. Suppose we want to form a flip-flop in n4,

which needs two 1-bit flip-flops according to the

combination table. Each pair of flip-flops in n1 are selected

and checked to see if they can be combined If there are

several possible choices, the pair with the smallest cost

value is chosen to break the tie. In Fig. 5(a), f1 and f2 are

chosen because their combination gains the smallest cost.

Thus, we add a new node f3 in the list below n4, and then

delete f1 and f2 from their original list [see Fig. 6(b)].

Fig 6(b) Two 1-bit flip-flops, f1 and f2, are replaced by the 2-bit flip-flop

f3.

Step3: Replaced 2-Bit Flip-Flop f6.

 Similarly, f4 and f5 are combined to obtain a new

flip-flop f6, and the result is shown in Fig. 6 (c)

.

Fig 6(c) Two 1-bit flip-flops, f4 and f5, are replaced by the 2-bit flip-flop

f6.

Step4: Replacing 4-Bit Flip-Flop f9

 After all flip-flops in the combinations of 1-

level trees (n4 and n5) are obtained as shown in Fig. 6(d),

we start to form the flip-flops in the combinations of 2-level

trees (n6, and n7).

Fig 6(d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit flip-flop

f9.

Step5: Replacing 4-bit flip-flop f1

 In Fig. 3.6 (e), there exist some flip-flops in the lists

below n2 and n4, and we will merge them to get flip-flops

in n6 and n7, respectively. Suppose there is no overlap

region between the couple of flip-flops in n2 and n4. It fails

to form a 4-bit flip-flop in n6. Since the 2-bit flip-flops f3

and f6 are merge-able, we can combine them to obtain a 4-

bit flip-flop f10 in n7.

Fig 6(e) Two 2-bit flip-flops, f3 and f6, are replaced by the 4-bit flip-flop

f10.

Step6: Sets of Flip-Flops After Merging

 Finally, there exists no couple of flip-flops that can

be combined further, the procedure Finishes as shown in

Fig. 6(f).

Fig 6(f) Sets of flip-flops after merging.

Volume IV, Issue III, March 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 138

Advantages of Merging Multi Bit Flip-Flops

 Smaller design area due to shared clock drivers and

clock gating cells.

 Less delay and power of the clock network due to

fewer clock sinks and smaller capacitive load on

the clock net;

 Controllable clock skew because of common clock

.

 The required routing resource for a scan chain is

greatly reduced because of fewer cells in a scan

chain.

III. RESULTS AND DISCUSSION

SIMULATION OF TWO 1-BIT FLIP-FLOP

Fig. 8(a) Two single bit flip-flop output

Figure the simulation result of two 1-bit flop-flops.

It requires two clock pulses to operate the flip-flop. When

clk1 is enable, the input d1 is assign to the output q1.

Otherwise, it stable in previous state. When clk2 is enable,

the input d2 is assign to the output q2. Otherwise, it stable in

previous state.

SIMULAION OF 2-BIT FLIP-FLOP OUTPUT

Fig. 8(b) double bit flip-flop simulation output

Figure shows the simulation result of 2-bit flop-

flops. It needs one clock pulses to operate the flip-flop.

When clk1 is enable, the input d1 is assign to the output q1

and also d2 is assign to q2. Otherwise, it stable in previous

state.

SIMULATION OF COMBINATIONAL TABLE

Fig. 8(c) Combinational Table output

Figure shows the simulation of combinational

table. It has library and combinational table. Library has 1-

bit and 4-bit flip-flop. Pseudo type of 2-bit and 4-bit flip-

flops are added to the library. The combinational table

creates each combinational of flip-flop response of each

clock cycles. Then. Eliminate unused flip-flops and create

final table.

SIMULATION OF MERGING MANY FLIP-FLOPS

Fig 8(d) merging many flip-flops

Figure shows the simulation of merging many flip-

flops by using one clock pulse. When the clock is enable,

Volume IV, Issue III, March 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 139

the input d1,d2,d3,d4,d5,d6 and d7 is assign to the output

q1,q2,q3,q4,q5,q6 and q7. Otherwise it remains the previous

state.

POWER ESTIMATION OF DOUBLE BIT FLIP-FLOP

Fig 8(e) Power Estimation of Double Bit Flip-Flop

Figure shows the power Estimation of 2-bit flip-

flop. The total power estimation of 2-bit flip flop is 20mW.

This is smaller than using two 1-bit flip-flops. In this 2-bit

flip-flop, we are using 1 clock is used for operating two flip-

flop. Due to sharing clock tree, the power becomes reduced.

POWER ESTIMATION OF TWO SINGLE BIT FLIP-

FLOP

Fig 8(f) Power Estimation of Two Single Bit Flip-Flop

Figure shows the power Estimation of two 1-bit

flip-flop. The total power estimation of two 1-bit flip flop is

25mW. This is greater than using 2-bit flip-flops. So, the 2-

bit flip-flop is more benefit-able compared to two 1-bit flip-

flops.

V. CONCLUSION AND FUTURE WORK

 This paper has proposed an algorithm for flip-flop

replacement for power reduction in digital integrated circuit

design. The procedure of flip-flop replacements is

depending on the combination table, which records the

relationships among the flip-flop types. The concept of

pseudo type is introduced to help to enumerate all possible

combinations in the combination table. By the guidelines of

replacements from the combination table, the impossible

combinations of flip-flops will not be considered that

decreases execution time. The experimental results show

that our algorithm can achieve a balance between power

reduction and wire length reduction. Besides power

reduction, the objective of minimizing the total wire length

is also considered. to the cost function. The experimental

results show that our algorithm can achieve a balance

between power reduction and wire length reduction.

In future, the multi bit flips (or) shared clock pulse

of the IC replaces to double edge triggered multi-bit flip-

flop. It improves the overall performance and power

consumption. Then, It also reduces the delay greatly. The

total wire length is also minimized.

REFERENCES

[1] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and

R. L. Allmon, “High-performance microprocessor design,”
IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 676–686, May

1998.

[2] W. Hou, D. Liu, and P.-H. Ho, “Automatic register banking for

lowpower clock trees,” in Proc. Quality Electron. Design, San

Jose, CA, Mar. 2009, pp. 647–652.

[3] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of
technology scaling in the clock power,” in Proc. IEEE VLSI

Comput. Soc. Annu. Symp., Pittsburgh, PA, Apr. 2002, pp. 52–

57.
[4] H. Kawagachi and T. Sakurai, “A reduced clock-swing flip-flop

(RCSFF) for 63% clock power reduction,” in VLSI Circuits Dig.

Tech. Papers Symp., Jun. 1997, pp. 97–98.
[5] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang,

“Power-aware placement,” in Proc. Design Autom. Conf., Jun.

2005, pp. 795–800.
[6] W. Hou, D. Liu, and P.-H. Ho, “Automatic register banking for

low power clock trees,” in Proc. Quality Electron. Design, San

Jose, CA, Mar. 2009, pp. 647–652.
[7] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of

technology scaling in the clock power,” in Proc. IEEE VLSI

Comput. Soc. Annu. Symp., Pittsburgh, PA, Apr. 2002, pp. 52–
57.

[8] . Y.-T. Chang, C.-C. Hsu, P.-H. Lin, Y.-W. Tsai, and S.-F.

Chen, “Post-placement power optimization with multi-bit flip-
flops,” in Proc. IEEE/ACM Comput.-Aided Design Int. Conf.,

San Jose, CA, Nov. 2010,pp. 218–223.

[9] . J.-T. Yan and Z.-W. Chen, “Construction ofconstrained multi-
bit flipflops for clock power reduction,” in Proc. ICGCS, 2010,

pp. 675–678.

[10] . Y.-T. Chang, C.-C. Hsu, M. P.-H. Lin, Y.-W. Tsai, and S.-F.
Chen, “Post-placement power optimization with multi-bit flip-

flops,” in Proc. ICCAD, 2010, pp. 218–223.

[11] . S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo, and W.-K. Mak, “Power-
driven flip-flop merging and relocation,” in Proc. ISPD, 2011,

pp. 107–114.

[12] L.-T. Wang, Y.-W. Chang, and K.-T. Cheng, Eds., “Electronic

Design Automation: Synthesis, Verification”, and Test.
Burlington, MA: Elsevier/ Morgan Kaufmann, 2009.

