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Abstract— Model Order reduction has been extensively used in 

study of dynamic behavior of many Engineering and industrial 

large scale systems as well as Electrical and Electronic systems 

including microelectronic systems such as integrated circuits. The 

motivation for appropriate MOR is to obtain an accurate model 

of smaller order which can be easily simulated and implemented 

in hard ware with ease saving effort, cost and time. In this paper 

an analysis of some MOR techniques based on moment matching 

and Padé approximation and related to Krylov sub spaces more 

particularly Asymptotic Waveform Evaluation(AWE), Padé Via 

Lanczos (PVL), Matrix- Padé Via Lanczos (MPVL), Symmetrical 

PVL (SymPVL) has been carried out. These techniques are 

applicable to matrix equations resulting when Finite Element 

Method (FEM) is used to model Electromagnetic wave 

propagation and radiation problems. AWE methods are straight 

forward  to understand and implement but numerically not 

stable. Lanczos and PVL methods solve the Eigen value problems, 

numerically more stable and superior due to their computational 

efficiency but they can loose passivity for RLC systems.  This 

paper also discusses the ARNOLDI algorithm and improved 

Arnoldi method like Passive Reduced order Interconnect Macro 

modelling Algorithm (PRIMA) and SVD  Laguerre which are 

stable as well as retain the passivity. 

 

Index Terms— Model Order Reduction (MOR), Moment matching, 

Padé approximation, Finite Element Method (FEM),  Krylov sub 

spaces,  Asymptotic Waveform Evaluation(AWE), Arnoldi 

Algorithm, Lanczos process, Padé Via Lanczos (PVL), Matrix- Padé 

Via Lanczos (MPVL), Symmetrical PVL (SymPVL),  Passive 

Reduced order Interconnect Macro modelling Algorithm (PRIMA) 

I. INTRODUCTION 

he basic idea of Model order reduction is to replace the 

original large scale system model with a much smaller 

one, yet still retain the original behavior with high accuracy. 

(PDE) Partial differential equations describe the physical 

behavior of the system under consideration. Depending on the 

dimension of the original PDE and desired spatial accuracy, 

the number of variables can extend from hundreds to several 

millions [1]. Every system can be generalized into the 

following time linear invariant linear differential algebraic 

equation: 

𝐺𝑥 𝑡 + 𝐶
𝑑

𝑑𝑡
𝑥(𝑡) = 𝐵𝑈(𝑡)                                             (1.1)                 

and output of system is as follows: 

𝑌 𝑡 = 𝐴𝑇𝑥(𝑡)                                                                  (1.2) 

 

Where G, C € 𝑅𝑛𝑋𝑛 , C is non singular B € 𝑅𝑛𝑋𝑚 ,   A € 𝑅𝑛𝑋𝑝  

Taking the Laplace transformation of  equation Eq.(1.1) we 

have : 

 𝐺 + 𝑠𝐶 𝑋 𝑠 = 𝐵𝑈(𝑠)                                                     (1.3) 

The transfer function of the above system is: 

𝐻 𝑠 = 𝐴𝑇 𝐺 + 𝑠𝐶 −1𝐵                                                    (1.4) 

This transfer function is a function of s and can be expanded 

into a moment expansion around s=0: 

𝐻 𝑠 = 𝑀0 + 𝑠𝑀1 + 𝑠2𝑀2 …….                                        (1.5) 

The matrices 𝑀𝑖 , 𝑖 = 0,1,2 … ..   are called moments of the  

transfer function. 𝑀0 is the DC solution of the system for s=0, 

so for zero frequency.𝑀1 is the Elmore delay which represents  

the signal at the input port to reach the output port. 

The transfer function in frequency domain is the Laplace 

transform of the impulse response. 

𝐻 𝑠 =  (𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
                                                       (1.6) 

If we  expand 𝑒−𝑠𝑡 in a Taylor polynomial we get 

𝐻 𝑠 =   (𝑡)
∞

0
 1 − 𝑠𝑡 +

1

2
𝑠2𝑡2 + ⋯… 𝑑𝑡 =   𝑡 𝑑𝑡

∞

0
−

𝑠  𝑡 𝑡 𝑑𝑡
∞

0
+

1

2
𝑠2  𝑡2 𝑡 𝑑𝑡

∞

0
…                                    (1.7) 

Elmore delay is the first moment of the moment expansion. At 

least first two moments must be preserved in a reduction set 

up. The transfer function can also be expanded around another 

point 𝑠0€ R for AC analysis. 

𝐻 𝑠 = 𝑀0 +  𝑠 − 𝑠0 𝑀1 +  𝑠 − 𝑠0 
2𝑀2 …….                  (1.8) 

The goal of Krylov subspace MOR [2] which is based on 

moments  is to find a projection based approximation of the 

original transfer function. In other words, the objective is to 

calculate a reduced order system with transfer function H(s) 

where moment expansion is given.                 

Let us take different methods which use moments to reduce 

ODE. Lot of research is going on to enhance the methods and 

in this paper we have discussed a few methods in Krylov space 

which uses moments.  

II. AWE (ASYMPTOTIC WAVEFORM EVALAUATION) 

The AWE is based on approximating the Laplace domain 

transfer function of a linear network by a reduced order model. 

T 
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The transfer function can be approximated by  Pade’s 

approximation. A  Pade approximation is ratio of two 

polynomials P(s)/Q(s) where deg(Q(s) ≥ deg (P(s) [3] AWE 

calculates a  Pade’s  approximation of finite degree so the 

degree of P(s) and Q(s) is finite. It computes the first two q 

moments of the transfer function H(s) and then find the  Pade 

approximation whose 2q moments match with 2q moments 

with original transfer function. 

Let us take the transfer function as considered in Eq.(1.3) 

 

 𝐺 + 𝑠𝐶 𝑋 𝑠 = 𝐵𝑈(𝑠) 

 

Expand X(s) around some expansion point  𝑠0€ C 

 𝐺 + 𝑠𝑜𝐶 +  𝑠 − 𝑠𝑜   𝐶  𝑋𝑜 +   𝑠 − 𝑠𝑜 𝑋1 +  𝑠 −
𝑠𝑜   

2𝑋2 ………  = 𝐵𝑈 𝑠                                                                

                                                                                            (2.1) 

 

 where X i = 0,1,2…are called the moments. Let us take U(s) 

=1 and take the terms according to powers of (s - so ) 

 𝐺 + 𝑠𝑜𝐶 𝑋0 = 𝐵                                                                (2.2) 

𝐶𝑋𝑜 +  𝐺 + 𝑠𝑜𝐶 𝑋1 = 0 
The following moments can be derived 

 𝐺 + 𝑠𝑜𝐶 𝑋𝑖 = −𝐶𝑋𝑖−1 for 𝑖 > 0                                       (2.3) 

 

This leads to Krylov subspace: 

𝐾𝑞  𝐺 + 𝑠𝑜𝐶 
−1𝐵,  𝐺 + 𝑠𝑜  𝐶 

−1𝐶  

=  𝐺 + 𝑠0𝐶 
−1𝐵,  𝐺 + 𝑠0𝐶 

−1𝐶 𝐺 + 𝑠0𝐶 
−1𝐵,…          (2.4)                                                      

The transfer function can be written as : 

𝐻 𝑠 =  𝑚𝑘 𝑠 − 𝑠𝑜 
𝑘𝑛

𝑘=0                                                 (2.5) 

or simply as                                                                          

𝐻 𝑠 =  𝑚𝑘𝑠
𝑘𝑛

𝑘=0                                                             (2.6) 

 

 

The transfer function in  Pade’s form can be written as: 

𝐻 𝑠 =
𝑃(𝑠)

𝑄(𝑠)
=

1+𝑎1𝑠+𝑏2𝑠
2+⋯.𝑎𝑚 𝑠𝑚

1+𝑏1𝑠+𝑏2𝑠
2+⋯𝑏𝑛 𝑠

𝑛                                       (2.7) 

Where transfer function is in moments form as 

𝐻 𝑠 = 1 + 𝑚1𝑠 + 𝑚2𝑠
2 + 𝑚3𝑠

3 + ⋯                              (2.8) 

Where P(s) are the zeroes of the transfer function  H(s) and 

zeroes of Q(s) are equal to the poles of H(s). We assume P(s) 

to have order p, so P(s) can be written as 

 

𝑃 𝑠 =  𝑎𝑘𝑠
𝑘𝑝

𝑘=0                                                                (2.9) 

and in terms of transfer function  it can be taken as: 

𝑃 𝑠 = 𝐻 𝑠 𝑄 𝑠                                                              (2.10) 

 𝑎𝑘𝑠
𝑘𝑝

𝑘=0 =   𝑚𝑘𝑠
𝑘𝑛

𝑘=0    𝑏𝑘𝑠
𝑘𝑝+1

𝑘=0                            (2.11) 

The equations can be solved for different powers of s setting  

𝑏0 = 1 this leads to the following matrix equation: 

    

𝑚0 𝑚1 ⋯ 𝑚𝑝

𝑚1 ⋱ ⋮
𝑚𝑝 𝑚𝑝+1 ⋯ 𝑚2𝑝

 

 
 
 
 
𝑏𝑝+1

𝑏𝑝
⋮
𝑏1  

 
 
 

=  

𝑚𝑝+1

𝑚𝑝+2

⋮
𝑚2𝑝+1

                      (2.12) 

The AWE [4] can be used to determine the time domain or 

frequency domain response of the linear network over 

predetermined range of excitation frequencies. This method 

creates problem for matrices sizes larger than eight. Therefore 

more than eight poles cannot be approximated by AWE.  

III.   PADE’S VIA LANCZOS (PVL) 

PVL was introduced by Gallivan, Grimme and Vandooren in 

1994 and by Feldman and Freund in 1995 to overcome the 

drawbacks of AWE. PVL provides a numerically stable 

algorithm that computes the  Pade approximation of a linear 

circuit[3]. PVL can be used to generate an arbitrary number of 

poles and zeros and in fact even all of them. This algorithm 

requires the same amount of computations as AWE as it 

generates more poles and can be increased in accuracy. 

A. Single Input Single Output PVL 

Let us take transfer function of first order differential equations 

with single input and single output [6-8] : 

𝐶𝑥   =  −𝐺𝑥 + 𝑏𝑢                                                               (3.1) 

 𝑦 = 𝐼𝐻𝑥 + 𝑑𝑢                                                                    (3.2) 

𝐼𝐻  is a nx1 output vector that selects output of interest from the 

matrix system where bu and du represents the excitations from 

independent sources. This transfer function is applied to 

complex system where s € C with the condition (𝐺 + 𝑠0𝐶) is 

non singular. Consider a problem in which the equations 

describing the system can be cast into the Laplace form 

𝑠𝐶𝑋 = −𝐺𝑋 + 𝑏𝑈                                                              (3.3) 

𝑌 = 𝐼𝐻𝑋                                                                              (3.4) 

 

𝐻 𝑠 = 𝐼𝐻 𝐺 + 𝑠𝐶 −1𝑏                                                     (3.5) 

Using change of variables  𝑠 =  𝑠0 + 𝜎𝐶 

𝐷 = − 𝐺 + 𝑠0𝐶 
−1𝐶,                                                        (3.6) 

𝑟 =  𝐺 + 𝑠0𝐶 
−1𝑏 

Where 𝑠0 is the point of expansion in the complex s plane. 

𝐻 𝑠0 + 𝜎 = 𝐼𝐻 𝐼 − 𝜎𝐷 −1𝑟                                             (3.7) 

The PVL algorithm uses the iterative Lanczos[4] process to 

reduce the matrix D to a triagonal matrix 𝑇𝑞  where 𝑞 ≤ 𝑛 

Assuming that the matrix D is diagonalizable, we obtain 

𝐻 𝑠0 + 𝜎 = 𝐼𝐻𝑉 𝐼 − 𝜎𝜏 −1𝑉−1𝑟                                     (3.8) 

Where 𝐷 = 𝑉𝜏 𝑉−1 and   𝜏 = 𝑑𝑖𝑎𝑔     where 21,

……are the eigen values and D is a diagonal matrix and V 

contains the corresponding eigenvectors as columns.  

𝐼𝐻𝑉 = 𝑓𝑇 , 𝑉−1𝑟 = 𝑔                                                          (3.9) 

From eq. 3.8 we have : 

𝐻 𝑠0 + 𝜎 =   
𝑓𝑖𝑔𝑖

1−𝜎 
𝑖

𝑁
𝑖=1                                                ( 3.10) 

𝑓𝑖  𝑎𝑛𝑑𝑔𝑖  are the components of the vectors f and g. 

 

In PVL every iteration leads to the preservation of two extra 

moments. This makes PVL a very efficient and powerful 

algorithm. The disadvantage with this method is that it does 

not always preserve stability. 

 

B. Multi Input Multi Output PVL( MPVL ) 

The original PVL algorithm is applicable to SISO system 
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Freund reported a matrix-Pade via Lanczos (PVL) IN 1998 for 

a multi input multi output (MIMO) system. Let us take the 

transfer function with MIMO system as in Eq.(1.1) the transfer 

function is as follows[9]: 

 

𝐻 𝑠 = 𝐴𝐻 𝐺 + 𝑠𝐶 −1𝐵                                              ( 3.11) 

Let us expand around  𝑠0 we have : 

  𝑠 =  𝑠0 + 𝜎𝐶, 

  𝑀 = − 𝐺 + 𝑠0𝐶 
−1𝐶,                                                   (3.12) 

  𝑅 =  𝐺 + 𝑠0𝐶 
−1𝐵                                                        (3.13) 

Where M and R are known as Block Krylov subspace. 

 

The new transfer function is as follows: 

𝐻 𝑠0 + 𝜎 = 𝐴𝐻 𝐼 − 𝜎𝑀 −1𝑅                                     (3.13) 

This leads to Krylov subspace as: 

𝐾𝑞 𝑅,𝑀𝑅,𝑀2𝑅………𝑀𝑗−1𝑅                                     (3.14) 

 

MPVL is applied to solve models resulting from applying 

the finite element method (FEM) to model electromagnetic 

wave propagation problems in the frequency domain. Like  

PVL   the disadvantage of this method is also that it does not 

always guarantee stability. 

Another method presented by Freud and Fieldman [10] is 

SymPVL Symmetric PVL [5] which is the efficient version of 

PVL for the case of symmetric matrices. This method cures the 

stability problem observed for. The main idea of these methods 

is to make use of the fact that the matrix is symmetric so that it 

can be decomposed using [11] a choleskey decomposition. 

This then automatically leads to stability of the associated 

approximation methods. Rodney D Slone et al[17] reviewed 

various explicit and implicit computer based algorithms viz 

AWE (explicit), Lanczos (implicit) , PVL and MPVL 

(implicit) and concluded that they are computationally 

efficient. Though they have some individual advantages and 

disadvantages, MPVL is better suited for radiation problems. 

IV. ARNOLDI METHOD 

Arnoldi method can also be used as the basis for MOR method 

like PVL. Similar to PVL, one can define an expansion point 

𝑠0 and work with the shift and input transfer function. 

 

Where 

𝐺 = (𝐺 − 𝑠0𝐶)−1𝐶                                                             (4.1) 

𝐵 = (𝑠0𝐶 − 𝐺)−1𝐵                                                             (4.2) 

 

In the Arnoldi process, Krylov space is generated which is 

associated with the matrices 𝐺  and 𝐵  as follows: 

 

𝐾𝑞 𝐺 ,𝐺  𝐵 ,𝐺 2𝐵 ………𝐺 𝑞𝐵                                            (4.3) 

 

If the size of the Krylov space q , is smaller than the size of 

the system n, a reduction can be performed by projecting the 

system matrices onto the Krylov space, in the following way 

where V is the orthonormal basis of the ktylov space[12] 

 

𝐺 = 𝑉𝑇𝐺𝑉                                                                       (4.4)                   

𝐶 = 𝑉𝑇𝐶𝑉                                                                       (4.5) 

𝐴𝑇 = 𝐴𝑇𝑉                                                                        (4.6) 

 

The transfer function of the reduced system approximates 

the transfer function of the original system well within a 

certain frequency range. The main difference with PVL is that 

only one Krylov space is generated namely with the block 

Arnoldi process [13] and the projections are performed with 

orthogonal vectors. Block Arnoldi methods are well known in 

the context of solving linear systems. The accuracy of the 

block Arnoldi approximations gradually increases as the order 

is increased since more moments of the original matrix will be 

matched. 

V. PASSIVE REDUCED ORDER INTERCONNECT 

MACRO MODELLING ALGORITHM (PRIMA) 

PRIMA [12] is an improved Arnoldi method which is 

described below. Fundamental difference is that the projection 

of the system matrices is done explicitly, in contrast to PVL 

and Arnoldi, where the tridiagonal or Hessenberg matrix is 

used directly. 

The Krylov space is generated 

 

𝐾𝑞 = ( 𝐺 + 𝑠0𝐶 
−1𝐵,  𝐺 + 𝑠0𝐶 

−1𝐶(𝐺 + 𝑠0𝐶)−1𝐵,…… . ) 

                                                                                           (5.1) 

Instead of taking the block Hessenberg matrix H as 

approximation of  𝐺 + 𝑠0𝐶 
−1𝐶, the system matrices G and C 

are explicitly projected onto the basisV: 

 

𝐺𝑞 = 𝑉𝑇𝐺𝑉                                                                        (5.2) 

𝐶𝑞 = 𝑉𝑇𝐶𝑉                                                                         (5.3) 

 

Although the method is expensive, the explicit projection onto 

the Krylov space as done here has strong advantages. It makes 

PRIMA more accurate than the Arnoldi method. It ensures 

preservation of stability and passivity. Explicit projection [14] 

comes down to pre-multiplying the equation of the system by 

𝑉𝑇  and replacing the state space vector x by V 𝑥 . 
 

𝑉𝑇(𝐺 + 𝑠𝐶)V 𝑥 = 𝑉𝑇𝐵𝑢.                                                   (5.5) 

𝑦 = 𝐴𝑇𝑉𝑥                                                                             (5.6) 

 

Since 𝑥 = 𝑉𝑥  the approximation of the original state space can 

be found if 𝑥  is available. The projection onto the smallest 

possible Krylov space, consisting of only one block preserves 

the first moment of the system. Sequentially, a moment more 

is preserved every time a large Krylov space is used for 

projection, whereas in PVL with every iteration only two 

moments are preserved. Joao M S Silva et al [18] reviewed the 

projection base methods viz PVL and PRIMA and observed 

that though they are simple, efficient and accurate, they have 

the short comings of computational complexity, high cost and 

lack of general strategy for error control and are dependent on 
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the structure of original models viz number of ports, power 

grid etc. 
 

VI. SVD – LAGUERRE METHOD 

  In this method the transfer function is [16] not shift and 

inverted as done in PRIMA and PVL, but the method is based 

on Laguerre expansion of transfer function. 

 

For the expansion scaled Laguerre functions are used, defined 

as: 

 

𝜑𝑛
𝑡  𝑡 =  2𝛼𝑒−𝛼𝑡 𝑙𝑛(2𝛼𝑡)                                                (6.1) 

 

Where 𝛼 is a positive scaling parameters and 𝑙𝑛  (𝑡) is the 

laguerre polynomial. 

 

 𝑙𝑛 𝑡 =
𝑒 𝑡𝑑𝑛

𝑛 !𝑑𝑡 𝑛
(𝑒−𝑡𝑡𝑛)                                                       (6.2) 

 

In it was shown that the Laplace transformation of 𝜑𝑛
𝛼(𝑡) is : 

 

𝜑𝑛
𝑡  𝑠 =

 2𝛼

𝑠+𝛼
 
𝑠−𝛼

𝑠+𝛼
 
𝑛

                                                           (6.3) 

 

The Laguerre expansion looks like this: 

 

𝐻 𝑠 = (𝐺 + 𝑠𝐶)−1B=
 2𝛼

𝑠+𝛼
𝐴𝑇  ( 𝐺 + 𝛼𝐶 −1(𝐺 −∞

𝑛=0

𝛼𝐶))𝑛(𝐺 + 𝛼𝐶)−1𝐵  
𝑠−𝛼

𝑠+𝛼
 
𝑛

                                              (6.4) 

 

The expansion gives raise to generally Krylov space starting 

with the matrix (𝐺 + 𝛼𝐶)−1B and using a generating matrix 

(𝐺 + 𝛼𝐶)−1(𝐺 − 𝛼𝐶)−1 and then Krylov space leads to 

 

𝐾𝑞 = [ (𝐺 + 𝛼𝐶)−1B, (𝐺 + 𝛼𝐶)−1, (𝐺 − 𝛼𝐶)−1]               (6.5) 

 

The number of linear systems equations to be solved is equal 

to that in PRIMA, so the method is comparable in computation 

demand. The orthogonalisation of the columns can be done by 

a SVD after all columns have been computed. Analogously to 

the PRIMA method, the system matrices are explicitly 

projected onto the generated Krylov subspace. Consequently 

stability and passivity are preserved. 

 

VII. CONCLUSION 

In this paper a number of Model Order Reduction methods 

have been  reviewed. AWE though simple but cannot be used 

for large matrices. Techniques based on the PRIMA and 

Arnoldi  improve the numerical stability by finding a set of 

orthogonal Vectors with the same information as the moments. 

PRIMA preserves the stability and passivity of a system, 

whereas other methods are not successful while preserving the 

passivity of a system. A slight disadvantage of this method as 

compared to PVL  is that only one moment per iteration is 

preserved. Just like PRIMA, in SVD Laguerre method stability 

and passivity is preserved. 

. 
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