
Volume IV, Issue V, May 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 11

A Study on Bad Code Smell

I M Umesh
1
, Dr. G N Srinivasan

2

1
Research Scholar, Bharathiar University, Coimbatore, Tamilnadu

2
Department of Information Science & Engineering, R V College of Engineering, Bengaluru, Karnataka

Abstract- Software quality degenerates over time due to various

reasons like software ageing, inconsistent design and improper

requirement analysis during early stages of software

development. Bad code smell is an indication of the persistent

deeper problem that may exist. Bad Code smells are neither bugs

nor technically incorrect and hence do not prevent the software

from normal functioning. Refactoring is the term used to

describe the process of removing the bad code. This paper throws

light on bad code smell and detection techniques available. The

paper is divided in three sections: first we introduce code smells

and methods to detect them, and then we review of various

studies conducted on these bad code smells. Finally we will

describe the results and discuss them.

Key words - Bad code smell, software maintainability, software

metrics, refactoring.

I. INTRODUCTION

esign issues are nothing but Bad Smells at the code level.

Improvising the software structure without losing any

functionality is Refactoring. The awareness on the system

design will throw light on probable errors and predict the

possible failures.

A set of Software metrics is used to identify the bad smell in

code that may cause frequent failures and associated costs. If

left unattended, bad smells can consume lots of resources in

terms of maintenance costs, testing etc., Removing bad smells

from the code makes software more maintainable as bad code

smells are a new measure of software maintainability.

Removal of code smell is identified as a way to improve

design standard of software. Detection of bad code in huge

systems remains time consuming and prone to error. This may

be due to the lack of adequate tool support. Many researchers

have done lot of work on detection of bad code smells.

Bad code smells indicate the trouble and they are only

guidelines and can not be used as directives. There are various

tools available for detection of bad code smells. An eclipse

plug-in called JDeodorant traces bad smell and applies some

refactoring to resolve them.

Checkstyle is a tool that can help programmers writing java

code that adheres to a coding standard that is capable of

detecting bad smells like Large Class, Long Method..

CodeNose was developed in 2005 as a prototype for

automated code smell detection due to the lack of tools at that

time. It is implemented as a plug-in for eclipse which detects

and presents code smells similar to how compilation errors

and warnings are displayed.

Following table depicts the various bad smells and its

description as given by Fowler etal. [1].

Type Description

Duplicated code
Repeated appearance of code

structure

Long method Too long method

Large class
The Classes with too many

instances, variables and methods

God class
Class that tends to centralize the

intelligence of the system

Long parameter list
A long list of parameters in a

procedure or function

Feature envy
More tightly coupled class in

wrongplace

Contrived

complexity
Complicated design pattern

Complex

conditionals
Checks for unrelated conditions

Primitive

obsession

Primitives are used instead of

small classes

Switch statement
Instead of polymorphism,

runtime class are used.

Data clumps
Data items that often appear

Together

Temporary fields
Class having very rarely used

variable.

Refused bequest
Child class does not fully support all

the methods or data it inherits

Lazy class
A class which does nothing enough

and needs removal.

Data class
A class that contain data without any

logic.

Middle man
A class that delegates most of its

tasks.

Divergent change
The class that needs frequent

changes for different reasons.

D

Volume IV, Issue V, May 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 12

II. BAD CODE SMELLS

Bryton et al. [2] demonstrated in their work that the Long

Method code smell can be detected automatically and

objectively. But this model is restricted and cannot be

generalized as the calibration was performed on a particular

project and its detection capability was limited to that project.

The authors suggested automatable process validity for

detection of code smells.

The statistical techniques were used to obtain a mathematical

model which is capable of detecting Long Method instances

upon source code analysis.

An Eclipse plug-in was developed to detect and asses he code

smells in java code by Tiago Pessoa [3]. The statistical

detection algorithm was built on Binary Logistic Regression

Model. The SmellChecker is a prototype version of the tool

which was developed as an Eclipse plug-in to detect code

smells in java code which allows smell tagging and

visualization.

FoutseKhomh [4] in their research identified code smells in

almost 9 releases of Azureus and 13 releases of Eclipse. The

study was conducted to understand the relationship between

bad code smells and change proneness. It was proved that in

all Azureus and Eclipse, code smells are more correlated to

change proneness than others. The empirical evidence of

negative impact of code smells on change proneness was

revealed by their study. The classes with smells are

considerably subject to changes than others. Some specific

code smells, are more likely to be cause of concern during

evolution.

The study on Code Smell effects on Maintenance were

conducted by Dag I.K. Sjøberg [5]. The study involved in

quantifying the relationship between code smells and the

effort of maintenance in the industrial environment.

The study was conducted on java systems which are

developed independently and are functionally equivalent.

Maintenance tasks were performed on these systems that

include platform adjustment and functionality for tailored

reports. The time spent on each of the file by the developers

were recorded and analyzed whether the number of smells in

the file affected effort.

The findings of the study include some inconsistently

maintained duplicated code lead to more change effort than

that of the copied code. However, there exist no strong

evidences of associated duplicated code with defective code.

The presence of bad code smells alone won’t affect

comprehension but their combination. The study indicated that

combination of bad code smells increases the effort of the

developers on comprehension tasks.

In an Industrial-strength Open Source system, an investigation

was carried out to ascertain the relationship between the bad

smells and class error probability in three error severity levels

by Preet Kamal Dhilonet [6]. The Research showed that the

Bad Code Smells are associated with the class error

probability in the context of post release system evolution

process.

III. DETECTION METHODS

The tools for detection of bad code smells employ different

methods to detect bad code smells. Some of them are

discussed here.

 JDeodorant is an eclipse plug in tool that can recognize

opportunities for extracting cohesive classes from “God

Classes” and automatically apply the refactoring chosen

by the developer.

 inCode works in the background of eclipse. During

programming, if programmer writes any bad structure,

than it shows these smells as, “eclipse show error” and

warnings in the shape of red color blocks along with

code.

 PMD traces dead code, empty catch or switch

statements, the variables that are not used or duplicated

code in the java source code. This toll is capable of

detecting bad smells like Long Parameter List,

Duplicated Code Smells.

 FindBugs can be used to detect java program bugs. It can

detect common coding mistakes like thread

synchronization issues and also misuse of API methods.

IV. DISCUSSION AND CONCLUSION

It is required to understand what code smells are and why

they are bad, then one can better judge whether source code

should be refactored. Software refactoring is widely used to

delay the degradation effects of software aging and facilitate

software maintenance.

The studies are focused more on developing tools to detect

bad code smells. Very few studies report the impact of bad

code smell on software performance. This indicates an

important gap in the current knowledge of Bad Code Smells.

The percentage of share of detection tools is shown in the

graph below.

Figure 1 Detection tools: Percentage of share

13

40

17

30

0

10

20

30

40

50

Strcuture
101

(Java, .NET)

Resharper
(.NET)

FindBugs
(Java)

Others

Detection Tools - % of Share

P
er

ce
n

ta
ge

http://dl.acm.org/author_page.cfm?id=81435604611&coll=DL&dl=ACM&trk=0&cfid=180903094&cftoken=73821870

Volume IV, Issue V, May 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 13

Several studies are conducted on refactoring of the object

oriented programming. Many software tools are available for

the automated detection of bad smells. The tools differ in

their approach and their capability. Some of the tools

available are shown in Table.

Table 1 Bad code detection tools

Tool Capability

Structure101

Helps in influencing the architecture

when the code is edited wherein the

architecture can be changed without

disrupting the code.

ReSharper

Visual Studio plug in that can analyze

several thousands of lines of code

quickly

FindBugs

Used with eclipse IDE and it is the

software used to find bugs in Java

programs.

JDeodorant
Can detect Feature Envy, Type

Checking, Long Method and God class.

inCode
Can detect Feature envy, God class,

Duplicate code and Data class.

JDEvAn

(Java Design

Evaluation and

Analysis)

Evaluates a design evaluation history of

software system and provides the

information about the system history

A feature that is missing amongst most of the smell detectors

is to perform refactoring directly as a solution to a detected

smell. Determining whether some piece of code contains bad

smell(s) is somewhat subjective and still there is a lack of

standards.

REFERENCES

[1]. FOWLER, M., BECK, K., BRANT, J., OPDYKE, W. & ROBERTS, D.

(1999) Refactoring: Improving the Design of Existing Code, Addison
Wesley

[2]. Bryton, S., Abreu, F.B., and Monteiro, M., 2010. ―Reducing

Subjectivity in Code Smells Detection: Experimenting with the Long
Method , Seventh International Conference on the Quality of

Information and Communications Technology, Vol., pp. 337-343.

[3]. Tiago Pessoa, “An Eclipse Plugin to Support Code Smells Detection”,
INFORUM'2011 conference proceedings, Luis Caires e Raul Barbosa

(eds.), 8-9 September, Coimbra, Portugal, 2011

[4]. FoutseKhomh, An Exploratory Study of the Impact of Code Smells on
Software Change-proneness , Proceeding WCRE '09 Proceedings of the

2009 16th Working Conference on Reverse Engineering Pages 75-84

IEEE Computer Society Washington, DC, USA 2009

[5]. Dag I.K. Sjøberg, “Quantifying the Effect of Code Smells on

Maintenance Effort”, IEEE Transactions on Software Engineering,

Volume 3, Issue 36

[6]. Preet Kamal Dhillon, GurleenSidhu, “Can Software Faults be Analyzed

using Bad Code Smells? : An Empirical Study”, International Journal of
Scientific and Research Publications, Volume 2, Issue 10, October 2012

[7]. A. Deursen, L. Moonen, A. Bergh, and G. Kok, ―Refactoring test

code,Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes in Software Engineering

(XP2001), M. Marchesi and G. Succi, Eds., May 2001

http://dl.acm.org/author_page.cfm?id=81435604611&coll=DL&dl=ACM&trk=0&cfid=180903094&cftoken=73821870
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618

