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Abstract:- The present work is to study the effect of MHD 

flow and heat transfer within a boundary layer flow on an 

upper-convected Maxwell (UCM) fluid over a stretching 

sheet. The fluid is assumed to be gray, emitting and 

absorbing radiation but non scattering medium. The 

governing boundary layer equations of motion and heat 

transfer are non-dimensional, by using appropriate 

similarity variables it changes into the, ordinary differential 

equations. Thes ODE solved numerically by shooting 

technique with fourth order Runge–Kutta method. For a 

UCM fluid, a thinning of the boundary layer and a drop in 

wall skin friction coefficient is predicted to occur for higher 

the elastic number. The objective of the present work is to 

investigate the effect of Maxwell parameter β, magnetic 

parameter M and Prandtl number Pr on the temperature 

field above the sheet. 
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Nomenclature 

b stretching rate [s−1] x horizontal coordinate [m] 

y vertical coordinate [m] 

u horizontal velocity component [ms−1] 

v vertical velocity component [ms−1] 

T temperature [K] 

t time [s] 

Cp specific heat [Jkg−1 K−1] 

f dimensionless stream function 

Pr Prandtl number, μCp/k 

M2 Magnetic parameter, σB2
0 /ρb 

q heat flux, −k ∂T/∂y [J s−1m−2] 

Nux  local Nusselt number 

Greek symbols 

β Maxwell parameter 

η similarity variable, (4) 

θ dimensionless temperature 

k thermal diffusivity [m2 s−1] 

μ dynamic viscosity [kgm−1 s−1] 

υ kinematic viscosity [m2 s−1] 

ρ density [kgm−3] 

 τ shear stress, μ∂u/∂y [kgm−1 s−2] 

ψ stream function [m2 s−1] 

superscript 

′     first derivative 

″    second derivative 

‴    third derivative 

I. INTRODUCTION 

 

he studies of boundary layer flows of Newtonian and 

non-Newtonian fluids over a stretching surface have 

received much attention because of their extensive 

applications in the field of metallurgy and chemical 

engineering and particularly, in the extrusion of polymer 

sheet, from a die or in the drawing of plastic films. During 

the manufacture of these sheets, the melt issues from a slit 

and is subsequently stretched to achieve the desired 

thickness. Such investigations of magnetohydrodynamic 

(MHD) flows are very important industrially and have 

applications in different areas of research such as 

petroleum production and metallurgical processes. MHD 

flows through a porous stretching surface are of great 

significance to engineers and scientists in the field of 

meteorology, cosmic fluid dynamics, astrophysics and 

geophysics. In addition to this, the influence of radiation 

and convective heat exchange on chemically reacting 

fluids, arise in many heat and mass transfer processes with 

applications in many branches of science and engineering. 

Such applications include cooling of solar collectors, 

recovery of petroleum resources, building thermal 

insulation, design of geothermal systems, heat exchanger 

design, hot metal rolling, wire drawing, manufacturing of 

ceramics or glassware and polymer extrusion processes. 

Due to these numerous applications, some investigations 

have been conducted to study the effects of radiation and 

chemical reaction on magneto hydrodynamics convective 

flow towards a stretching porous surface. Pioneering work 

on two-dimensional stagnation point flow problem was 

first studied by Hiemenz [1] who used the similarity 

transformations approach to reduce the Navier-Stokes 

equations to non-linear ordinary differential equations. 

Raptis, A.and Soundalgekar [2] investigated the MHD 

flow past a steadily moving infinite vertical porous plate 

with mass transfer and constant heat flux. Xu and Liao [3] 

investigated the unsteady MHD flows of a non-Newtonian 

fluid over a non-impulsively stretching flat sheet and 

presented an accurate series solution. The effects of 

chemical reaction on free convection MHD flow through 

porous medium bounded by vertical surface with slip flow 

region was analyzed by Senapati et al [4]. Alireza et al. 

[5] presented an analytical solution for MHD stagnation 

point flow and heat transfer over a permeable stretching 

sheet with chemical reaction. E.M. Arthur and Y.I. Seini 

[6] studied MHD Thermal Stagnation Point Flow towards 

a Stretching Porous Surface. 

 Crane [7] investigated the flow caused by the 

stretching of a sheet. Many researchers such as Gupta and 

Gupta [8], Chen and Char [9], Dutta et al. [10] extended 

the work of Crane [7] by including the effect of heat and 

mass transfer analysis under different physical situations. 

Several authors have considered various aspects ofthis 

problem and obtained similarity solutions (Ishak et al. 

[11-14], Boutros et al. [15], Mahapatra et al. [16], Pal 

T 
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[17,18], Gebhart [19] came out with observations that 

devices which operate at high rotational speeds or which 

are subject to large decelerations experience significant 

viscous dissipation effect Brewster [20] discussed about 

thermal radiation transfer properties. Pop et al. [21] 

analyzed the radiative effects on the steady two-

dimensional stagnation-point flow of an incompressible 

fluid over a stretching sheet. Abdelkhalek M. [22] talked 

about thermal radiation effects on Hydromagnetic flow. 

Vyas and Ranjan [23] discussed the dissipative MHD 

boundary-layer flow in a porous medium over a sheet 

stretching nonlinearly in the presence of radiation. The 

effects of thermal radiation on MHD stagnation point flow 

past a stretching sheet with heat generation was studied by 

Zhu et al. [24]. Viscous mechanical dissipation effects are 

important in geophysical flows and also in certain 

industrial operations and are usually characterized by the 

Eckert number. P. Vyas and N. Srivastava [25] study on 

dissipative radiative MHD boundary layer flow in a 

porous medium over a non-isothermal stretching sheet. 

Sadeghy K. et al. [26] studied Sakiadis flow of an upper 

convected Maxwell fluid. Hayat et al. [27] studied the 

MHD stagnation-point flow of upper convected Maxwell 

fluid over stretching sheet. Many researchers [28] have 

studied UCM fluid by using numerical methods with no 

heat transfer. The researcher [29] have done the work 

related to UCM fluid by using HAM-method. It is 

recognized that there are many other methods that could 

be considered in order to describe some reasonable 

solutions for this particular type of problem. But to the 

best of our knowledge, no numerical solution has 

previously been investigated for the combined effect of 

MHD flow and heat transfer of a UCM fluid above a 

stretching sheet. The focal point in the present work is to 

investigate same numerically. 

 

II. MATHEMATICAL FORMULATION 

 

The equations governing the transfer of heat and 

momentum between a stretching sheet and the 

surrounding fluid  can be significantly simplified if it can 

be assumed that boundary layer approximations are 

applicable to both momentum and energy equations. It is 

more suitable for Maxwell fluids as compared to other 

viscoelastic fluid models. For MHD flow of an 

incompressible Maxwell fluids resting above a stretching 

sheet is given by 
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where B0, is the strength of the magnetic field, υ is the 

kinematic viscosity of the fluid and λ is the relaxation 

time Parameter of the fluid. As to the boundary 

conditions, we are going to assume that the sheet is being 

stretched linearly. Therefore the appropriate boundary 

conditions on the flow are 

               u=ax
m
, v=0     at y=0     

    …..(3) 

         u→0 as    y→∞, 

where B >0, is the stretching rate. Here x and y are, 

respectively, the directions along and perpendicular to the 

sheet, u and v are the velocity components along x and y 

directions. The flow is caused solely by the stretching of 

the sheet, the free stream velocity being zero. 

 Let us introduce the following similarity 

transformations: 
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where  is the stream function. The velocity components 

are obtained as: 
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Using these transformation we get the following 

differential equations 
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Here B and 
B

B
M

2
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
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 are magnetic and 

Maxwell parameters respectively. 

 The boundary conditions (3) become 

 





  as 00f0f

0at   0f(0)10f

'''

'
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III. HEAT TRANSFER ANALYSIS 

Let us consider the steady two-dimensional 

MHD radiative boundary layer flow of a viscous, 

incompressible, electrically conducting  fluid in a fluid 

saturated porous medium. The flow is caused by a heated 

impermeable stretching sheet placed at the bottom of the 

porous medium. The x- axis is along the sheet and the y- 

axis is taken normal to it. Two equal and opposite forces 

are applied along the sheet so that the position of the 

origin is unaltered. The stretching velocity varies 

nonlinearly with the distance from origin.  A variable 
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magnetic field B(x) of specified form is applied transverse 

to the sheet along the y-axis in the opposite direction of 

gravity.The induced magnetic field is neglected, which is 

valid for small magnetic Reynolds number. We assume 

that the wall is subjected to a variable heat flux. Assuming 

the fluid to be Newtonian, without phase change and gray, 

we further assume that both the fluid and the porous 

medium are in local thermal equilibrium. Rosseland 

approximation [20] is assumed to account for radiating 

heat flux. The radiative MHD boundary- layer flow taking 

viscous and Ohmic dissipations into account is given by 

the following equation: 
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where u, v are velocity components in x,y directions 

respectively, v is the kinematic viscosity of the fluid,  is 

the density. 

The thermal boundary conditions depend upon 

the type of the heating process being considered. Here, we 

are considering two general cases of heating namely,(1) 

Prescribed surface temperature and (2) prescribed wall 

heat flux, varying with the distance. 

 

3.1 Prescribed surface temperature case (PST) 

In this case prescribed temperature is assumed to be a 

function of x is given by 

           u=ax
m 

  ,   v=0     T = Tw (x)   at y=0 

            u=0,        T=T∞  at y→∞   

    .....(9) 

where T is temperature of the fluid, Tw is surface 

temperature, T∞ is ambient temperature. 

We define the dimensionless the fluid temperature, then 

equation (   ) becomes 
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K3

T16
 N

3




 is the radiation parameter. The boundary 

conditions for () 

      θ(η) = 1 at  η=0 

      θ(η)=0 as η→∞    

                              …..(11) 

 

 

 

3.2 Prescribed heat flux case (PHF) 

The power law heat flux on the wall surface is 

considered to power m of x in the form 
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T is temperature, K is thermal conductivity, thermal 

conductivity, B(x) is applied variable magnetic field, Cp is 

the specific heat at constant pressure, qr the radiation heat 

flux, qw is the rate of heat transfer, E0 is the positive 

constant, n = 2m is a heat flux parameter and T  is the 

uniform temperature of the ambient fluid. Using 

Rosseland approximation for radiation [17] we can write: 
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where ,  are Stephan-Boltzmann constant and the mean 

absorption coefficient respectively. Temperature 

difference within the flow is assumed to be sufficiently 

small so that T
4
 may be expressed as a linear function of 

temperature T, using a truncated Taylor series about the 

free stream temperature T to yield 
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Following Chaim [29], we assume magnetic field of the 

form 
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where B0 is positive constant and exponent m   1. 
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The corresponding boundary conditions are 

 0at    1'   

     as0    

     …..(17) 

 

IV. NUMERICAL SOLUTION 

We adopt the most effective shooting method 

with fourth order Runge–Kutta integration scheme to 

solve boundary value problems in PST and PHF cases 

mentioned in the previous section. The non-linear 

equations (5) and (10) in the PST and PHF cases are 

transformed into a system of five first order differential. 

The essence of the shooting method to solve a boundary 

value problem (BVP) is to convert it into system of initial 
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value problems (IVP). In the present case the equation 

(10) is reduced to such system of IVP where missing 

value of θ’(0) and also for θ(0) for different set of values 

of parameters having bearing on the phenomena are 

chosen purely on hit and trial basis such that the boundary 

condition at the other end i.e. η→∞,θ(η)→0 is satisfied as 

the approximate value for η∞.  The integration was then 

repeated with another larger value of η∞.  The values of the 

initial wall temperature values of   θ(0) Were then 

compared. 

If they agreed to about 6 considerable digits, the 

last value of n∞ used was considered the approximate 

values otherwise the process was repeated until further 

change in n∞  did not lead to any more change in the value 

of θ(0).Once the convergence is achieved we integrate the 

resultant ordinary differential equations using standard 

fourth order Runge–Kutta method with the given set of 

parameters to obtain the required solution. 
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Figures for PST case 

                Figure-5                                                                                    Figure-6     
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                      Figure-9                               Figure-10   
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  Graphs for PHF case 

                       Figure-13                                                                                  Figure-14 
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                    Figure-15      Figure-16                                    
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                                               Figure-17 

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

value of 

v
a
lu

e
 

graph  Vs .when Ec is varying ....

Ec=.5,1,1.5,2.5

PHF

=1

M=1

N=1

Pr=.71

m=1

 

 

V. RESULT AND DISCUSSION 

The exact solution for the set of equation is not 

feasible because of the non linear form of the momentum and 

thermal boundary layer equations. we try to calculate 

numerically . Appropriate similarity transformation is 

adopted to transform the governing partial differential 

equations of flow and heat transfer into a system of non-

linear ordinary differential equations. The resultant boundary 

value problem is solved by the efficient shooting method. 

Present results are compared with some of the earlier 

published results in some limiting cases are shown in Table 

1.The effect of several parameters controlling the velocity 

and temperature profiles are shown graphically and discussed 

briefly. 

 fig1 and fig 2 show that velocity decreases of the fluid 

at any point above the sheet as Maxwell parameter 

increases. The same effect shows in case of increases 

of magnetic parameter M. 

 fig3 and fig 4 show the effect of magnetic parameter 

M, in the absence of Maxwell parameter (at β = 0) and 

in the presence of Maxwell parameter (on at β=1)  

respectively, the velocity profile above the sheet. An 

increase in the magnetic parameter leads in decrease of 

both u and v velocity components at any given point 

above the sheet. This is due to the fact that applied 

transverse magnetic field produces a drag in the form 

of Lorentz force thereby decreasing the magnitude of 

velocity. The drop in horizontal velocity as a 

consequence of increase in the strength of magnetic 

field is observed. 

 

 fig5 and fig 6 show the temperature profiles above the 

sheet for the PST case. An increase in m and in 

Prandtl number Pr is noticed to decreases temperature 

profile. 

 

 fig7 and fig 8 show the effect of radiation parameter N 

and Eckret number Ec on the temperature profile 

above the sheet. The fluid temperature increases as 

both the parameter increases. 

 

 fig9 and fig10 show the effect of heat transfer 

coefficient due to increase in radiation parameter and 

Eckert number. It is seen that hear transfer increases 

initially and then changes above the sheet for large 

values of N and Ec 

 

 fig11 and fig12  show the effect of heat transfer 

coefficient in presence of various parameter like m 

and Prandtl number. 

 

 fig13 and fig 14 show the effect of m and radiation 

parameter N on heat transfer, it is observed that it 

decreases as m  increases, same effect shows with 

radiation parameter also. 

 

  fig15 show the effect of heat transfer because of 

Prandtl number. It is observed that heat transfer 

increases as Pr increases. 

 

 fig16 and fig17 show the effect of temperature profile 

in the presence of  some values of the parameters 
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namely ,the radiation parameter N, Eckert number 

Ec.it is seen that temperature profile become fuller and 

increase with the increase of radiation resulting in 

higher surface heat flux. 

 

  

CONCLUSIONS 

We study the MHD flow and heat transfer within 

a boundary layer of UCM fluid above a stretching sheet. 

Numerical results are presented to illustrate the details of 

the flow and heat transfer characteristics and their 

dependence on the various parameters. We observe that, 

 

 When the magnetic parameter increases the velocity 

decreases, also, for increase in Maxwell parameter, 

there is decreases in velocity. The effect of 

magnetic field and Maxwell parameter on the UCM 

fluid above the stretching sheet is to suppress the 

velocity field, which in turn causes the 

enhancement of the temperature field. 

 

 An increase of Prandtl number results in decreasing 

thermal boundary layer thickness and more uniform 

temperature distribution across the boundary layer 

in both the PST and PHF cases. The reason is that 

smaller values of Pr are equivalent to increasing the 

thermal conductivities. 

 

 Thermal boundary layer increases as radiation 

parameter N and Eckert number Ec increases in 

both the PST and PHF cases. 

 

  Heat transfer coefficient decreases as m and 

radiation parameter N increases.  
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