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I. INTRODUCTION

In [3] authors studied ¢-conformally flat contact metric
manifolds under the condition that the characteristic vector

field & belongs to (k,z)-nullity distribution.C. Ozgir [7]
studied ¢-conformally flat Lorentzian para-Sasakian
manifolds. In [8] U. K. Kim studied generalized Sasakian
space forms and proved a classification theorem under the
assumption that the characteristic vector field is killing. In
this chapter, we shall study g-conformally flat generalized
Sasakian space forms with Q¢=¢Q, Q being the Ricci
operator of the manifold

I1. PRELIMINARIES

A (2n+1)-dimensional Riemannian manifold (M, g) is said
to be an almost contact metric manifold if there exist on M a
(1,1) tensor field ¢, a vector field & and a 1- form 7 such
that
(2.1)

ME)=1, X= -X+nX)é  and

9(#X, #Y) =g (X,Y) = n(X) n(Y),

for any vector fields X, Y on M. Then, ¢ (£ ) =0 and 70¢ =
0. Such a manifold is said to be a contact metric manifold if
d77=® where Dis defined as d(X,Y) = g(X,dY)is
fundamental 2-form of M.

An almost contact metric manifold is called a Sasakian
manifold if

(2.2)
= —¢X’

(Vi AY=9g(XY) S-n(MX V, &

for any X,Y on TM, where V denotes the Riemannian
connection of g.

In [1] Alegre, Blair and Carriazo introduced the
notion of a generalized Sasakian space form. Given an almost

contact metric manifold M (¢, &,7,g) , we say that M is a

generalized Sasakian space form denoted by M (f,, f,, f,)

if there exist three functions fy, f,, and f;on M such that,
(2.3) R(X,Y)Z = f{g(¥,Z)X -g(X,Z)Y}

+R{g(X ¢2) ¢¥ - g (Y, §2) pX +

+f {n(X) n(2) Y - n(Y)n (D)X + g

29 (X, ¢Y) ¢Z}

X, 2) n(V) &
-9 (Y.2) n(X) & },
for any vector fields X, Y, Z on M, where R denotes the

curvature tensor of M .This kind of manifold appears as a
natural generalization of the well-known Sasakian space
form, which can be obtained as a particular case of

. . : c+3
generalized Sasakian space forms by taking f, = T ,

c-1 . .
=fy= T On a generalized Sasakian space form we have

QX = (2nf, +3f, - f,)X
-@f, +(@2n - f;)n(X)¢

(2.5) r=2n(2n+1)f, +6nf, —4nf,,

2.6)R(X,Y)& = (f, — £){n(Y)X —n(X)Y} From
(2.6), we have

2.7)

R(X,8)& = (f, = T ){X —n(X)c}.

Using (2.4) and (2.6) we have

(2.8) S(X,&) =2n(f, - f5)n(X),

(2.9)
S(X,Y) = (2nf, +3f, - £,)g(X,Y)
= 3f, +(@2n-1) f,)n(X)n(Y)

S(#X,¢Y) =S(X.Y)

(2.10) —2n(f, - f)n(X)n(Y)
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A generalized Sasakian space form M (f,, f,, f,) is said to

be n-Einstein if its Ricci tensor S is of the form

(211) S(X,Y)=ag(X,Y)+bn(X)n(),

for any vector fields X and Y, where a, b are smooth functions
on M. Let M(f,f,,f;) be a (2n+1)-dimensional

generalized Sasakian space form. The Weyl conformal
curvature tensor C, the conharmonic curvature tensor K and

the projective curvature tensor P of M(f,, f,, f;) are
defined by

(2.12)
C(X,Y)Z =R(X,Y)Z

_L[S(Y,Z)x —S(X,Z)Y +g(Y,Z)QX —
2n-1

T

m[gW,Z)X—g(X.Z)Y]

—g(X,2)QY]+

K(X,Y)Z =R(X,Y)Z

(2.13) 1
— o7 S, Z2)X =S(X,2)Y +g(Y,Z)QX
- g(X,2)Qv].

P(X,Y)Z =R(X,Y)Z

2.14 S
&1 — oY, 2)QX - g(X,2)QV]

respectively, where Q is the Ricci operator, defined by
S(X,Z)=g(QX,Y), S is the Ricci tensor, = =tr(S) is
the scalar curvature and X,Y,Z € (M), y(M) being

the Lie algebra of vector fields of M .Let C be the Weyl
conformal curvature tensor of M. Since at each point

p e M the tangent space T (M) can be decomposed into
directsum T, (M) = g(T, (M) )+ L(£, ),

where L(cfp) is a 1-dimensional linear subspace of
T,(M) by &,
C:T,(M)xT (M)xT,(M)
> (T, (0)+ L)

generated we have  map:

It is natural to consider the following particular cases:
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OC:T,(M)xT (M)xT,(M) - L(fp ) that is, the
projection of the image of C in ¢(Tp M )) is zero.

@C:T,(M)xT,(M)xT, (M) = ¢(T,(M)), that is,
the projection of the image of C in L(ffp) is zero.

@ Cio(T,(M))xg(T,(M))x (T, (M) - LIg, ).
that is, when C is restricted to ¢(Tp M )) is zero. This
condition is equivalent to

2.15)  ¢°C(#X,dY JZ =0, see ([3], [5]).

The case (1) and (2) were considered in [9] and [10]
respectively. The case (3) was considered in [3], [5]. Now our
aim is to study generalized Sasakian space forms satisfying
(2.15).

I11. MAIN RESULTS

In  this section we
¢—conharmonically flat,
Sasakian space forms.

consider  g—conformally flat,
¢—projectively flat generalized

Definition1 ([2]) A differentiable manifold (M, g)
satisfying the condition (2.15) is called g—conformally flat.

Theorem 1 Let M(f,, f,, f;)be a (2n+1)-dimensional

generalized Sasakian space form, which is g-conformally
flat. If M is contact metric manifold with ¢Q = Q4, then it
is 77 -Einstein manifold.

Proof: Suppose M be a (2n+1)-dimensional, ¢-conformally
flat generalized Sasakian space form then, it is easy to see

that #°C(¢#X, @Y )@Z =0 holds if and only if

(3.1) g(C(#X,eY)Z, 4N )= 0, for any vector fields
X,Y,ZWe y(M).Using (2.12) ¢-conformally flat
means

(3.2)

IR, V)2, ) = [ (Q4Y . 42) (X, )
+ (&Y, 4Z)g(QaX, AN)

— g(QeX, #Z)g(PY , V) — g(#X, #Z2)g(QeY , W) ]
r {g(w,¢2)g(¢x,¢W) }

- 2n(2n—-1) | - 9(¢#X, gZ)g(4Y , W)
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GZn,f} be a local orthonormal basis of vector

,¢92n,.§}i5 also a local

orthonormal basis, if we put X =W = ¢, in (3.2) and sum up
with respect to ¢, then

Let {&),....,

fields in M . By using that { L peees

(3 3)
Zg (de, Y )dZ ¢e,) Z[g (Q4Y, d2)(de,  ¢&,)

g0, 2)9(Qde, 8,) - (Q@awﬁz) (¢Y,¢ea)— (e, )9 42,)]
I zzn{g<¢v,¢z>g(¢ea,¢ea) }
2n(2n-1) 5| - g(de, #Z)a(gY de,) |

a=1
It is easy to verify that

(3.4)

> a(R(e, #V)aZ.d6, )= S(9Y,2)- ;- 1) 9(0Y 2)

(3.5) i8(¢ea,¢ea):f—2n(fl—f3),
@ D olve, )50, e,)= S(oY ).
(3.7) Z_ng(¢ea,¢ea)=

And

@9 Yolde, w)olpY de,)= 90V 42).

In view of (3.4) — (3.8) the equation (3.3) can be written as

<s.g>s(¢v,¢z)=(§—<f1 - f3>jg(¢v,¢2).

Now, by using (2.1) and (2.10), the equation (2.24) takes the
form

S(Y,Z):(%—(fl— fg))g(Y,Z)—

(21_(2n +1)(f, - f3)jn(Y)n(Z)
n

(3.10)
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which implies, M is an 77 -Einstein manifold. This

completes the proof of the theorem.Using (2.9) and (3.10) we
have

Corollary 1 Let M(f,, f,, f;)be a (2n+1)-dimensional
generalized Sasakian space form. If M is contact metric
manifold with ¢Q = Qg, then f,, f, and f; are connected

by the relation ZL =(2n+1)f +3f, -2f1,.
n
Definition 2([4]) A differentiable manifold (M, g),
satisfying the condition
(3.11) $°K(PX, Y Z =0is  called ¢

conharmonically flat. In [2] authors considered (k-)-contact
manifolds satisfying (3.11). Now, we will study the condition
(2.26) on a generalized Sasakian space form.

Theorem 2 Let M(f,, f,, f;)be a (2n+1)-dimensional

generalized Sasakian space form, which is ¢
conharmonically flat. If M is contact metric manifold with
#Q = Q¢g, then it is 77 -Einstein manifold with zero scalar
curvature.

Proof: Suppose M be a (2n+1)-dimensional, ¢
conharmonically flat generalized Sasakian space form then, it

is easily seen that ¢2K(¢X,¢Y)¢Z =0 holds if and only
if

(312) g(K(gX,pY)dZ, W )= 0, for any vector fields
X,Y,Z,W e y(M).Using (2.13) ¢-conharmonically flat
means

g(R(#X, @Y )pZ, AN )

=5 _1[9(Q¢W 9Z)g(#X, )

+g(dY,#2)9a(QpX, AV)
— g(Q@#X, #Z)g(BY , V) — g(#X, #Z) g (Q@Y , V)]

Similar to the proof of Theorem 1, we can suppose that
{el,....,ezn,é} is a local orthonormal basis of vector fields

in M . By using the fact that { 1,....,¢62n,§} is also a

local orthonormal basis, if we put X = W = ¢, in (3.13) and
sum up with respect to «, then

(3.13)

(314)

1 2[g(QaY,42)
R , YA

Zg (de, .Y )PZ,fe,)= o 12{9@%1@)

+9(4Y,¢2)9(Qee,.¢e,) - 9(Qde,,4Z)g(4Y . ¢e,)
—g(se,.#2)9(QaY,¢e,)].

Now, using (3.4) — (3.8) the equation (3.14) takes the form

=1
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315 S(#Y.¢Z)=(z—(f,— 1,))9(4Y,4Z )and
hence applying (2.1) and (2.10) into (3.15) we have
S(Y,2)=(r~(f,~ f))(v.2)+
(-z+@n+2)(f, - £))n(V)n(@)

which implies, M is an 77 -Einstein manifold. Now, by

contracting (3.16) we obtain (2n-1)z = 0, which implies the
scalar curvature 7= 0. This completes the proof of theorem.

(3.16)

Definition 3([8]) A differentiable manifold (M, g),
satisfying the condition
(3.17) ¢°P(PX, Y WZ =0is  called ¢

projectively flat.

Theorem 3 Let M(f,, f,, f;)be a (2n+1)-dimensional

generalized Sasakian space form, which is ¢-projectively flat.

If M is contact metric manifold with ¢Q = Q¢g, then it is 7-
Einstein manifold.

Proof: Let M be a (2n+1)-dimensional, ¢-projectively flat
generalized Sasakian space form then, it is easily seen that

¢*P(#X, @Y )¢Z = 0 holds if and only if

for any

(.14) ¢

(3.18) g(P(#X.#Y)gZ, W) =0,
vector fields X,Y,Z,W e y(M) .Using
projectively flat means

(3.19) 9(R(#X,#Y)gZ, AN )

— [0, q2)9(QaX, W) — 9 (X Z)9 QY )]

Similar to the proof of Theorem 1, we can suppose that
{el,....,esz} is a local orthonormal basis of vector fields

inM . By using that { 1,....,¢62n,§}is also a local

orthonormal basis, if we put X =W = e, in (3.19) and sum up
with respect to ¢, then we have

(3.20) ng(R(¢ea,¢Y)¢z,¢ea)

1 i{g(qﬁYﬁZ)g(Qqﬁewm)—}
2n-155|9(fe, . #2)9(QeY . ¢e,) |

Now, using (3.4) — (3.8) the equation (3.20) takes the form

(321) 2nS(gY,4Z)=(r — (f, - f,)) 9(gY.42),

and hence applying (2.1) and (2.10) into (3.21) we have

a=1
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(3.22) S(Y,Z)z(%—%(fl—fs)jg(Y,Z)

+(_L+i(fl — fy)+2n(f, - f3)j77(Y)77(Z)
2n  2n

By contracting (3.22) we obtain (2n—1)(f, — f,) =0,

which implies f, = f, and hence M is an 7-Einstein
manifold.
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