

Volume IV, Issue VI, June 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 86

Estimating Cost of Software Maintenance Using

Component Based 4
th

 GL Approach

Mohammad Islam
1
, Dr. Vinodani Katiyar

2
, Prof. (Dr.) S. Qamar Abbas

3

1
Research Scholar, Shri Venkateshwara University, Gajraula, UP., India

2
Professor, SRM, University, Lucknow, UP., India,

3
Director, AIMT, Lucknow, UP., India

Abstract- All software products require maintenance and

support, depending upon the abilities of project term in the

overall software development environment. A good software

maintenance process would reduce the cost involved in terms

of money, manpower, resources and time. In recent years,

software development turned into engineering through

introduction of component-based software development and

maintenance (CBSDM). There are various models to estimates

the maintenance cost of traditional software like COCOMO,

SLIM, Function Point etc., but still there is no such a model to

estimate the cost of maintenance using component-based 4th

GL tools. This paper presents a new approach and direction

for estimating cost of software maintenance using component-

based 4thGL tools at the basis of COCOMO II model and its

existing parameters. The model is calibrated using the

empirical data collected from 12 software 4th GL projects. The

efficiency of the model is also compared with our model used

for such environment. The favorable results closely matching

and it can be achieved better predictive accuracy through

model implementation.

Key words: Software Cost Estimation, Maintenance cost

estimation model, Component based 4th GL tools, ACT, Existing

weights of Factors.

I. INTRODUCTION

s software development has become an essential

investment for many organizations, accurate software

cost estimation models are needed to effectively predict,

monitor, control and assess software development. The

organization software maintenance system has to fulfill the

needs like technical measure of the domain as well as

optimum quality service with maximizes strategic impact

and minimum cost of maintenance activities. One of the

greatest challenges facing software engineers in the

management of change control. Software engineers have

hoped that new languages and new process would greatly

reduce these numbers. However, this has not been the case.

This is fundamentally, because software is still delivered

with a significant number of defects. As new tools and

technologies are emerging for the development of software,

these issues have become even more important. Component

based fourth generation languages (4
th

GL) software

development provides one such difficulty. These languages

are based on reusable components which are neither

suitable to be calculated by FP analysis technique nor

classical effort estimation methods can be applied that are

specifically developed for procedural languages. The

limitations of traditional models are problematic for effort

estimation in component based 4
th

GL environment. There

exist some software effort estimation models for 4
th

GL

environment like van Koten, but these are developed for

data-centre application using database. Smith developed a

model to identify parameters for effort estimation in

component based software systems. COCOMO is a well-

studied and accepted effort estimation model. By

augmenting the COCOMO model with the proposed a new

model has been built upon the experience inherent in the

COCOMO techniques. This model can be used for all types

of software applications developed in any component based

4
th

GL environment.

II. RELATED RESEARCH STUDIES

A number of studies have been published to address cost

estimation models for software development and

maintenance. Existing studies are investigated and their

contents and limitations are as follows:

 Van Koten also developed Bayesian statistical

software effort prediction models for database-oriented

software systems, which are developed using a specific

4GL tool suite. It is actually an extension of the

previous model using statistical approach. Riquelme et.

al. compared different effort estimation methods and

presented a model for 4GL applications that analyses

the relationship between a set of metrics for 4GL

programs and the maintenance time for such programs

which uses SQL statements. This model is based on

the following parameters: NS= Total number of Select

instructions in the considered program. NI= Total

number of Insert instructions in the considered

program. ND= Total number of Delete instructions in

the considered program. NU= Total number of Update

instructions in the considered program. NT= Total

number of used Tables in the considered program.

NN= Total number of Nesting in the considered

program. This model is also suitable only for database

applications. Morgan Peeples developed a model,

where he calculates level of effort of a project as:

LOEP = a+b1× forms + b2 × reports + b3 × tables + b4

× modules, where LOEP is the number of person days

of effort it takes to develop a software application

project p; a is the y intercept; b1 is the number of

person days for one form F; b2 is the number of person

days for one report R; b3 is the number of person days

for one table T; b4 is the number of person day for one

module M.

A

Volume IV, Issue VI, June 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 87

 The authors (Boehm and Valerdi, 2008) proposed

evaluation criteria for the validity of the process

models and they provided effective results. This article

also explained the strengths and weaknesses of various

cost estimation techniques for the period of 1965 to

2005 (40 years). Cocomo-II (Boehm, 1999) was an

excellent model up to 2005 but it did not enfold the

new requirement and development styles for the

reuseness or estimation of cost. Cocomo-II directed the

software experts to create and designed new models

such as the Chinese government version of Cocomo

(Cogomo) and the Constructive Commercial-off-the-

Shelf Cost Model (Cocots) etc. Different future

challenges were discussed for the invention of new

model/methods and tools.

 An extension of UML (Unified Modeling Language) to

RE-UML (Requirements Engineering - UML) is

presented by the author (Mahmood and Lai, 2009).

RE-UML enabled a system analyst to find accurate

candidate components those fulfilled the stakeholders’

requirements. One of the main reasons of this research

was the lack of Component- Based System (CBS)

development phases in the UML particularly

requirements analysis and component selection.

According to them, RE-UML removed the need for a

system analyst to learn the new notations to model

CBS requirements and component selection process.

 Reusability of components in Component Based

Development (CBD) is illustrated in (Qureshi and

Hussain, 2008). The author also discussed and

compared different architectures of CBD. It may be

mentioned that a detail explanation of advantages and

disadvantages of CBD elaborated very nicely. The

authors in this paper (Qureshi, 2006) presented the

comparison of component based development (CBD)

with other traditional software development practices.

This paper evaluated object oriented process model

and author emphasized to get full benefits of reuse.

The role of repository for CBD has also been

discussed.

 The problem of crosscutting which is produced during

component development is elaborated (Clemente and

Hernández-2001). They solved this problem by the

extension with Aspect oriented methodology. It was

mentioned by an example that how new business rules

resulted in the more adaptable and reusable

components. According to them, this Aspect

Component Based Software Engineering has been

developed with success in the CORBA Component

Model domain (Frakes and Kang, 2005).

III. SOFTWARE MAINTENANCE

Maintenance activities include all work carried out post-

delivery and should be distinguished from block

modification which represent significant design,

development effort and supersede a previously released

software package. Formally, we may define software

maintenance as “It is the process of modifying a software

system or component after delivery to correct faults,

improve performances or other attributes or to a changed

environment”. In addition to the undiscovered flaws, it is

common that some number of known defects pass from the

development organization to the maintenance group. This

bow wave of unclosed bugs is exacerbated when multiple

versions of the same deliverable exist simultaneously.

Accurate estimation of the effort required to maintenance

delivered software is aided by the decomposition of the

overall effort into the various activities that make up the

whole process. The definition includes the following types

of activity of software maintenance:

 Redesign and redevelopment of smaller portions (less

than 50% new code) of an existing software product.

 Design and development of smaller interfacing

software packages which require some redesign (less

than 20%) of the existing software product.

 Modification of the software products code,

documentation or database structure.

 Design and development of a sizeable (more than 20%

of the source instructions comprising the existing

product) interfacing software package which requires

relatively little redesign of the existing product.

 Data processing system operations, data entry and

modification of values in the database.

According to the ISO/IEC-14764 standard, software

maintenance falls into one of four categories: corrective,

preventative, adaptive, or perfective which are defined in

the terms of (a) the goal of the change (correction or

enhancement) and (b) the timing of the change (proactive or

reactive). Corrective and preventative maintenance are

grouped more generally as corrections, while adaptive and

perfective maintenance are considered enhancements.

Fig-1: The taxonomy of Maintenance Categories.

Software maintenance cost is derived from the changes

made to software after it has been delivered to the end user.

From the given figure-2 below, it is obvious that

maintenance related to enhancement or perfection of a

software product is the largest single cost driver.

Fig-2: Percentage of total maintenance effort by repair categories.

50%

25%
20%

5%

0%

20%

40%

60%

Perfective Adaptive Corrective Preventive

Proactive

Reactive

(a)
(b)

Software

Maintenance

Phase

Enhancement

Preventive

Correction

Corrective

Adaptive

Perfective

Volume IV, Issue VI, June 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 88

IV. COMPONENT BASED 4
th

 GL APPROACH

Component Based Software Development (CBSD) was

a shift of paradigm from traditional software development

to facilitate the software development in effective, faster

and economical way by ensuring the reuse of software

packages known as component or COTS (Commercial off

the- shelf). CBSD provides a method of building the

software system that makes use of reusable components. It

also increases the reliability of the software when it is up

and running. There are two main components to CBSD: The

component architecture and component based development

procedure. Component architecture is used as a standard for

reuse software component. EJB (Enterprise Java Beans) is

the example of CBSD from Sun Microsystems.

Maintenance plays the important role in CBSD: According

to SEI, maintenance of CBSD is different from the

maintenance of custom built system in the following ways:

 System developers do not have access to the source

code.

 Maintenance and development is controlled by a third

party.

 Maintenance is done at component level rather than the

source code level.

V. PROPOSED SOFTWARE MAINTENANCE COST

ESTIMATION MODEL

 COCOMO (Constructive Cost Model) is used as a base

model to estimate the cost of software project. This model

was developed by Barry W. Boehm and published in 1981

using data collected from 63 projects. COCOMO II is an

extended version used to estimate the cost when planning

new software development. It is a good guide to estimate

the software maintenance cost. It is actually an extension of

the previous proposed model with new statistical

approaches for estimating cost of software maintenance

using component based 4
th

 GL approach.

Fig-3: Maintenance Cost Modeling Process.

If we are familiar with the model and development

process of subjects, software development process can be

processed in two ways. Firstly software maintenance phase

and other is project features. Software maintenance works

on the CBSM cost using 4
th

 GL tools with the help of

existing weights of technical and non-technical factors,

which will be able to estimate the cost of software

maintenance phase. Project features includes selection of

model adjustment and application with its characteristics;

annual change traffic could be estimated using the history

table which included database. CBSM cost using 4
th

 GL

project could be estimated the maintenance and

development cost with the help of maintenance phase and

result of ACT report. There are three specific existing

parameters used:

(a) Development cost of CBSM using 4
th

 GL approach.

(b) Existing weights of factors (Technical & Non-

Technical)

(c) Annual Change Traffic (ACT).

(a) Development cost of CBSM using 4
th

 GL approach:

CBSD includes the overall cost of Component Based

Software Development. Although it may be somewhat

controversial but modern software development

environments are better understood as aggregates of forms,

reports, tables and screens, rather than LOC. Fourth

generation language are component based languages which

provide a rich set of components. There are languages like

VB, Java, EJB and C#, where user can develop an

application without writing single line of code. When there

is no line of code, SLOC-based models cannot be used for

cost estimation of these applications. This model is

developed to predict the software effort only for that

software where data is accessed from database to forms,

reports and graphs. For non-database applications, this

model is not suitable. Fourth-generation languages are not

used only to develop data-centered application. These

systems can be used to develop various type of software,

including database applications, scientific applications,

generic software, computer games, mobile applications, the

list is endless.

One solution to this problem has been the use of fourth

generation languages which allow software to be developed

more quickly than would otherwise be the case. This change

has led to an increase in the amount of software to be

maintained.

Grindley [IDPM86] reported that some companies with

experience of fourth generation languages found it

economically sensible to consider rewriting their systems

rather than maintaining and patching existing software.

There are several types of effect which this move to fourth

generation languages can have on software maintenance:

 Simple hidden errors can be avoided, a fourth

generation language can deal with certain aspects of

the system automatically, and for example it can

determine the first and last records.

 Many fourth generation languages are linked to data

management systems with built in data dictionaries.

The programmer cannot misrepresent the data or fail to

declare variables.

 Many fourth generation languages are self

documenting. Poor documentation is likely to be a

Software

Development

Process

ACT

Report

Project

Features

H
is

to
ry

T
ab

le
/D

at
ab

as
e

Model Adjustment &

Application

Software

Maintenance

Phase

Existing Weights

of Technical &
Non-Technical

Factors

Final Estimation of

the Maintenance
Cost

Development
Cost of

CBSM using 4th

GL Tools

Volume IV, Issue VI, June 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 89

cause of maintenance difficulties with third generation

languages.

 Fourth generation language make the understandability

of a program clearer, and therefore easier for

maintenance by the third person.

 Many fourth generation languages disallow ill-

structured program constructs which can cause trouble

later.

(b) Existing weights of factors:

These are the various major technical and non-technical

factors which affect maintenance cost Component Based

Software:

Technical Factors:

 Module Independence: It should be possible to

modify one component of a system without affecting

other system components.

 Programming Languages: Programs written in high-

level programming languages are usually easier to

understand and hence maintain, then programs

written in a low-level language.

 Programming style: The way in which a program is

written contributes to its understandability and hence

the ease with which it can be modified.

 Program Validation: Generally the more time and

effort spent on design validation and program testing

the fewer errors in the program. Consequently,

corrective maintenance costs are minimized.

 Documentation: If a program is supported by clear,

complete yet concise documentation, the task of

understanding the program can be relatively

straightforward. Program maintenance costs tend to

be less for well-documented systems then for

systems supplied with poor or incomplete

documentation.

 Configuration management: It is used one of the

most significant costs of maintenance is keeping

track of all system documents and ensuring that these

are kept consistent. Effective configuration

management can help control this cost.

Non-Technical Factors:

 Application Domain: If the application domain is

clearly defined and well understood, the system

requirements are likely to be complete. Relatively

little perfective maintenance may be necessary. If the

application is in a new domain, it is likely that the

initial requirements will be modified frequently, as

users gain a better understanding of their real needs.

 Staff stability: Maintenance costs are reduced if

system developers are responsible for maintaining

their own programs. There is no need for other

engineers to spend time understanding the system. In

practice, however, it is very unusual for developers

to maintain a program throughout its useful life.

 Program Age: As a program is maintained, its

structure is degraded. The older program, the more

maintenance it receives and the more expensive this

maintenance becomes.

 External Environment: The dependent of the

program on its external environment. If a program is

dependent on its external environment it must be

modified as the environment changes.

 Hardware Stability: If a program is designed for a

particular hardware configuration that does not

change during the program’s lifetime, no

maintenance due to hardware changes will be

required. However, this situation is rare. Programs

must often be modified to use new hardware which

replaces obsolete equipment.

(c) Estimation of ACT (Annual Change Traffic):

In a survey of 63 products in various application areas,

Boehm [B0EHM81] developed a formula for estimating

software maintenance costs. The estimation is calculated in

terms of the Annual Change Traffic (ACT), defined as "The

fraction of a software product's source instructions which

undergo change during a (typical) year, either through

addition or modification". The ACT quantity is used, in

conjunction with the actual or estimated development effort

in person months, to derive the annual effort for software

maintenance. ACT is another parameter that is used to

estimate the maintenance cost. It includes the proportion of

original instruction that undergo a change during a year by

addition or modification, if ACT is given. For estimating

the ACT of future software project we start with the

existence of a series of given characteristics of a software

project. The characteristics must be believed to important

influences upon ACT.

(VII.1) PROPOSED MODEL IMPLEMENTATION:

Enterprise Java Beans component consists all of three types

of user interface components- forms, reports and graphs.

Once the related table(s) in the database is defined, the tool

automatically generates code that ensures the connectivity

between them. This implies that developer’s effort would be

primarily spent performing the two tasks: creating each

component by using various readymade graphical user

interface items such as text boxes, combo boxes and adding

code to the items. Modern software development

environments are aggregates of forms, reports, tables and

modules. In order to adjust the nominal effort, same effort

multipliers will be used as described in COCOMO II model

definition. According to COCOMO II, the nominal effort

for a given size project and expressed as PM is given by:

PMnominal = A × (Size)
B

The inputs are the Size of software development, a constant

A and a scale factor B. The size is in units of thousands of

source lines of code (KSLOC).

(1) Forms are objects created by a developer for

interaction or navigation by the user. The 4
th

 GL tool

provides templates for the developer to use. The form

templates can be used as menus that move the user

Volume IV, Issue VI, June 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 90

through the application, or for use as data entry,

querying screens or other forms required for the

application. A form is actually a collection of different

components.

(2) Reports are objects that a developer uses to retrieve

data from tables, to format and present that data to the

user. The 4
th

 GL tool provides an easy way to use

interface and readymade products for the developer to

tailor and create specialized reports. Some reports

may be simple but some may be more complicated as

they need extensive coding as well as higher level

complicated database queries and stored procedures.

(3) Tables are objects created to store data. The 4
th

 GL

tool provides features for the developer to define and

generate data definition language and create tables

automatically form design models. The level of

complexity also varies as some table may require only

a few fields, whereas other will require hundreds of

fields with integrity constraints.

(4) Modules represent that portion of a software

development application that cannot otherwise be

delivered, except to be created. These might be

computational algorithms, transaction handling,

processes and code written for different events.

For 4
th

 GL application, the Size of the software will be

calculated as:

Size = sizec + Sizem, where Sizec

is the size of components (Forms, Reports and Tables)

converted into KLOC. Sizec will be calculates as:

Sizec= SizeForm+SizeReprot+SizeTable.

It will be calculates as:

 SizeF = (𝑆𝐹𝑖)𝑛
𝑖=1 ,

where SF is the size of forms. The size of form will be

calculates as sum of size of its component. It will be

calculated as:

SF= (𝑆𝐹𝐶𝑖)𝑛
𝑖=1 ,

where SFC is the size of component used in the form. In

order to determine the nominal PMs, these components

have to be converted to SLOC.

In COCOMO II model, a table for converting FPs, written

in different languages to SLOC has been provided. But

unfortunately, there is no such type of conversion available

anywhere to convert 4
th

 GL components to equivalent LOC.

The recommended method converting these components to

their equivalent LOC will be expertise based.

SizeR = the sum of size of all reports size, used in the

project. It will be calculates as:

 SizeR = (𝑆𝑅𝑖)𝑛
𝑖=1 , where SR is the size of report.

As the nature of every report is not the same, therefore the

size of each report also depends on its complexity. Some

reports may be very simple and can be prepared using

report generator wizards, like Crystal Report. But there will

be many reports that will require complicated cross-tab

queries, stored procedure, selection formula, run-time

parameters and even some coding.

Tab-1: (Predicted Effort calculation of the selected 12

projects).

SizeT = the sum of size of all tables in database used with

the project. It can be calculated as:

SizeT = (𝑆𝑇𝑖)𝑛
𝑖=1 , where ST is the size of table. The table

size can be easily converted to LOC. The size of table is

directly related to number of fields. Sizem = the size of

modules in KSLOC.

Different GUI-based database environments provide

database designers like SQL Server. According to our own

experience, one simple field designing counts for three

LOC, whereas one integrity constraint implementation

counts for two LOC. Depending on the complexity of table,

the tables will be converted to LOC. Finally, Sizem will be

calculated as: Sizem = Size of Modules in KSLOC, whereas

Sizem is the total number of statements, written for different

computational algorithms, transaction handling, processes

and events.

Nominal effort for the selected projects was calculated by

calculating the equivalent size of forms, reports, tables and

modules. To determine the nominal PMs, all converted to

SLOC. In order to translate them into equivalent SLOC

different equivalence tables are constructed for different

categories of components. The SLOC value assigned to

different categories of component was set on the basis of

experience of the developers. As it has been discussed

earlier that these conversion tables can be maintained by

developers themselves, therefore these tables are not going

to be included here. These calculations are presented in

table 1 & 2 present empirical validation results.

We applied van Koten model to these projects. There were

considerable difficulties in applying this model as these

applications also had many non-database controls. However

their relative costs were calculated in best possible manner.

The results of van Koten’s model are presented in table 3.

P
#

T
o
o
ls

S
iz

e

(K
L

O
C

)

S
iz

e T
a
b

le
s

(K
L

O
C

)

S
iz

e R
ep

o
rt

s

(K
L

O
C

)

S
iz

e m
o
d

u
le

s

(K
L

O
C

)

S
iz

e F
o
rm

s

(K
L

O
C

)

P
re

d
ic

te
d

E
ff

o
rt

(P
M

)

1 VB.NET 6.263 1.5992 1.0902 0.788 3.7802 23.59

2 VB.NET 5.080 1.4607 0.7911 0.658 3.1651 19.22

3 VB.NET 5.692 1.4738 1.4713 0.725 3.0157 21.48

4 VB.NET 6.260 1.5986 1.0907 0.796 3.7788 23.58

5 VB 4.503 1.1462 0.7814 0.561 2.7095 16.01

6 VB 5.691 1.3102 0.8543 0.615 2.9056 17.79

7 VB 4.987 1.2483 0.7489 0.537 2.4469 15.22

8 VB 7.906 1.7825 1.2152 0.879 4.2134 26.69

9 C# 5.532 1.2184 0.8306 0.597 2.8802 17.21

10 C# 8.760 1.9284 1.3157 0.952 4.5584 29.17

11 C# 10.65 2.3480 2.0278 1.162 5.1233 36.35

12 C# 8.541 1.6602 1.2828 0.818 3.7734 24.62

Volume IV, Issue VI, June 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 91

This model was developed to predict the software effort

only for that software where data is accessed from database

to forms, reports, modules & graphs. For non-database

applications, this model is not suitable. These systems can

be used to develop every type of software, including

database applications, scientific applications, generic

software, computer games, mobile application, this model is

not suitable. These systems can be used to develop every

type of software, including database applications, scientific

applications, generic software, computer games, mobile

applications etc.

(VII.2) VALIDATION OF THE PROPOSED MODEL

SoftTech is a private software company, located in G.

Noida, is providing effective computing solutions within

public and private sector. Major development tools used in

this software company are VB.Net, Java, VB & C#. This

company was facing many problems in software cost

estimation. FP metrics were used to estimate the cost but

result were always unsatisfactory. We have applied the

proposed model on 12 projects using component based tools

that Enterprise Java Bean (EJB) is used instead of VB.Net,

which gave satisfactory results. All of these projects were

database projects, where SQL Server was used as backend

and Crystal Report as development tool. However, different

tools are used as frontend.

P# Tools
Actual

Effort (PM)

Predicted

Effort (PM)
MRE, %

1 EJB 21.54 19.69 14.53

2 EJB 22.38 17.32 11.32

3 EJB 18.61 16.58 19.31

4 EJB 21.43 15.33 06.97

5 VB 17.24 15.11 10.63

6 VB 16.11 14.89 9.13

7 VB 18.24 14.32 12.71

8 VB 28.30 24.79 19.21

9 C# 21.54 23.87 24.24

10 C# 26.24 29.27 27.24

11 C# 30.69 36.45 26.16

12 C# 21.56 24.72 28.21

Tab-2: Empirical validation results of our model:

MMRE of all 12 projects = 15.41%

EBJ = 09.42%, VB = 14.57%, C# = 27.29%

The conversion tables can be maintained by developers

themselves. These calculations are in table 2 presents

empirical validation results and table 3 presents the results

of van Koten’s model. We applied van Koten model to

these projects.

P

Tools

Actual

Effort (PM)

Predicted

Effort (PM)
MRE, %

1 VB.Net 23.52 27.34 16.24

2 VB.Net 24.48 24.89 14.67

3 VB.Net 20.71 27.40 22.30

4 VB.Net 23.53 24.58 13.46

5 VB 16.34 19.34 18.36

6 VB 18.21 20.23 11.09

7 VB 15.34 18.45 20.27

8 VB 31.40 32.40 13.85

9 C# 23.64 26.39 26.63

10 C# 28.34 37.56 32.53

11 C# 32.79 45.82 39.74

12 C# 22.66 28.45 25.55

Tab-3: The Results of van Koten’s Model

MMRE of all 12 projects= 17.81%

VB.Net = 10.70%, VB = 16.28%, C# = 33.33%

There were considerable difficulties in applying this model

as these applications also had many database controls.

However, their relative costs were calculated in best

possible manner. We have also applied Function Point

metrics on these projects but mean magnitude of relative

error (MMRE) was very high (26%). Best MRE in FP

metrics was 19%, whereas worst was 34%. Although the

personnel, who did the estimation work were competent

enough in applying FP metrics, the major problem was the

nature of 4
th

 GL tools as it is not suitable for FP metrics.

Therefore it is suggested that the developer should maintain

a conversion table for these components developed on the

basis of their expert and own experience.

VII. CONCLUSION & FUTURE RESEARCH

The COCOMO II model is a good guide to estimate the

maintenance cost of software projects. There were 12

software projects, which developed in 4GL tools. We have

applied our model on these projects using component based

tools that Enterprise Java Bean (EJB) instead of VB.Net,

which gave satisfactory results. The approach tested on

these cases proved robust and stable through cross-

validation and verification trials on software development

applications. EJB gave a significant level of accuracy and

measured in terms of MRE and MMRE. Best MRE among

these projects cases was 6.97% for EJB projects, whereas

worst was 28.21% for C# projects. We also compared it

with van Koten’s model, which resulted in very high

MMRE. Although MMRE for EJB projects was slightly

better for our approach, it was far worse for C# projects.

Further research with larger projects is still required. It is

also required to identify more components as only four

structural components that is Forms, Reports, Tables and

Modules have been identified that contribute to modern

software development using 4
th

 GL software tools and their

associated structural components. Calibration is likely to be

essential in order to improve the level of accuracy. Finally,

this research will be a new approach & direction for

estimating cost of software maintenance using component

based 4
th

 GL (EJB) tools.

REFERENCES

[1] Byoung-Chol Lee and Sung Yul Rhew “An Empirical Study

on Adjustment Factors to Estimate Maintenance Cost of
Applications Developed Using Components”, SoongSil

University, Seoul, 156-030, Republic of Korea, Lecture

Notes on Software Engineering, Vol. 2, No. 1, February
2014.

[2] Marounek P. “Simplified Approach to effort estimation in

software maintenance”, University of economic, Prague,
Faculty of information and statistics, Journal of systems

integration, 2012: 51-63.

Volume IV, Issue VI, June 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 92

[3] Marounek P. “SW Support and maintenance: Extension of

ontology about COE concept”, simplification of effort

estimation, thesis, Prague, VSE-FIS, 2012.

[4] T. Wijayasiriwardhane, R. Lai, K. C. Kang, “Effort

Estimation of Component based software development”, a

survey IET Software, vol. 5, pp. 216-228, 2011.
[5] Roger S. Pressman, Software Engineering: A Practitioner’s

Approach Seventh Edition, McGraw-Hill Higher Education,

2010.
[6] Deutsche Post DHL, “Deutsche Post DHL investors’ MAIL-

facts and figures”, 2010.

[7] Nguyen Vu. “Improved Size and Effort Estimation Models
for Software Maintenance”, University of Southern

California, 2010.

[8] Nguyen V., Boehm B.W., Danphitsanuphan P. (2010), “A
Controlled Experiment in Assessing and Estimating

Software Maintenance Tasks”, APSEC Special Issue,

Information and Software Technology Journal, 2010.
[9] Van Koten C., Grey A., “Bayesian statistical effort

prediction models for data-centred 4GL software

development”, Discussion paper 2005/2009, department of
information science, university of Otage, Dunedin,

NewZealand.

[10] V. Nguyen, B. Boehm, and P. Danphitsanuphan, “Assessing
and estimating corrective, enhancive and reductive

maintenance tasks: A controlled experiment”, IEEE, 2009,

pp. 381-388.
[11] Shukla, R and Mishra, A. K. 2009, “AI Based Framework

for Dynamic Modeling of Software Maintenance Effort
Estimation”, Proceedings of International Conference on

Computer and Automation Engineering, 313-317.

[12] Boehm B.W., Valerdi R. (2008), "Achievements and
Challenges in COCOMO-Based Software Resource

Estimation," IEEE Software, pp. 74-83, September/October.

[13] Nguyen V., Steece B., Boehm B.W. (2008), “A constrained
regression technique for COCOMO calibration”,

Proceedings of the 2nd ACM-IEEE international symposium

on Empirical software engineering and measurement
(ESEM), pp.213-222.

[14] Riquelme J.C., Polo M., Aguilar Ruiz J.S., Piattini M.,

Ferrer-Troyano F.J., Ruiz F “A comparison of effort

estimation methods for 4GL progeams: Experiences with

statisticals & data mining”, 2006, 16, (1), pp.127-140.

[15] Smith R.K. “Effort estimation in component-based software
development: Identifying paramenters”. The twenty-ninth

ACM SIGCSE Technical Symp., Atlanta, GA, 25 Feb-2005.

