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Abstract: Cloud computing provides services to potentially 

numerous remote users with diverse requirements. Though 

predictable performance can be obtained through the 

provision of carefully delimited services,it is worthful to 

identify applications in which a cloud might usefully host 

services that support the composition of more primitive 

analysis services or the evaluation of complex data analysis 

requests.In such settings, a service provider must manage 

complex and unpredictable workloads. This paper describes 

how utility functions can be used to make explicit the 

desirability of different workload evaluation strategies, and 

how optimization can be used to select between such 

alternatives. The approach is illustrated for workloads 

consisting of workflows or queries. 

 

I. INTRODUCTION 

 
loud computing essentially provides services; shared 

computational resources execute potentially diverse 

requests on behalf of users who may have widely 

differing expectations. In such a setting, someplace in the 

architecture, decisions have to be made as to which 

requests from which users are to be executed on which 

computational resources, and when. From the perspective 

of the service provider, such decision making may be 

eased through the provision of restrictive interfaces to 

cloud services, as discussed for cloud data services in the 

Claremont Report on Database Research [1]: Early cloud 

data services offer an API that is much more restricted 

than that of traditional database systems, with a 

minimalist query language and limited consistency 

guarantees. This pushes more programming burden on 

developers, but allows cloud providers to build more 

predictable services,and to offer service level agreements 

that would be hard to provide for a full-function SQL data 

service. More work and experience will be needed on 

several fronts to explore the continuum between today’s 

early cloud data services and more full-functioned but 

probably less predictable alternatives.This paper explores 

part of this space, by describing an approach to workload 

execution that is applicable to different types of workload 

and that takes account of: (i) the properties of the 

workload; (ii) the nature of the service level agreement 

associated with user tasks; and (iii) competition for the 

use of finite, shared resources. 

        In so doing, functionalities that in future which are 

explored may be supported within a cloud, rather than by 

layering rich application functionality over lean cloud 

interfaces, as in Brantner et al. [4].Wherever services are 

provided, service users have expectations; Service Level 

Agreements (SLAs) make explicit what expectations users 

can realistically place on a service provider [16], and may 

be associated with a charging model that determines the 

remuneration associated with certain Qualities of Service 

(QoS). Whether or not formal agreements are in place, 

decisions must nonetheless be made that influence the 

behaviors users experience, and service providers must 

put in place mechanisms that make such decisions.In this 

paper,there is an assumption that the abstract architecture 

are illustrated in Figure 1, where an autonomic workload 

mapper provides workload evaluation services 

implemented within a cloud. The autonomic workload 

mapper adaptively assigns tasks in the workload to 

execution sites. Given some objective, such as to 

minimize total execution times or, more generally, to 

optimize for some QoS target (whether these objectives 

are imposed by an SLA or not), the autonomic workload 

mapper must determine which tasks to assign to each of 

the available execution sites, revising the assignment 

during workload execution on the basis of feedback on the 

overall progress of the submitted requests.In this paper, 

investigation of the use of utility functions [9] to make 

explicit the desirability of the state of a system at a point 

in time.  

                                   

 
             In essence, a utility function maps each possible 

state of a system to a common scale;the scale may 

represent response times, numbers of QoS goals met, 

income based on some charging model for the requests, 

etc. In this setting, it is the goal of the autonomic 

workload mapper to explore the space of alternative 

mappings with a view to maximizing utility as measured 

C 
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by the utility function.It is proposed that utility functions, 

combined with optimization algorithms that seek to 

maximize utility for a workload given certain resources, 

may provide an effective paradigm for managing 

workload execution in cloud computing. The remainder of 

this paper is structured as follows. Section 2 describes a 

methodology for developing utility based autonomic 

workload execution. Sections 3 and 4 describe the 

application of the methodology to workloads consisting of 

sets of workflows and queries, respectively. Section 5 

presents some conclusions. 

 

II. UTILITY DRIVEN WORK LOAD EXECUTION 

 
When a utility-based approach is adopted, the following 

steps are followed by designers; instantiations of each of 

these steps are detailed for workloads consisting of 

workflows and queries in Sections 3 and 4, respectively. 

 
Utility Property Selection: Identify the property that it 

would be desirable to maximize – useful utility measures 

may be cast in terms of response time, number of QoS 

targets met, profit, etc. 

 

Utility Function Definition: Define a function Utility(w, 

a) that computes the utility of an assignment a of tasks to 

execution sites for a workload w expressed in terms of the 

chosen property – for workload mapping, such a function 

can be expected to include expressions over variables ve 

that describe the environment and the assignment a that 

characterizes the mapping for the components of w from 

abstract requests to tasks executing on specific execution 

sites. 

 

Cost Model Development: Develop a cost model that 

predicts the performance of the workload given the 

information about the environment ve and assignment a, 

taking into account the costs associated with adaptations. 

 

Representation Design: Design a representation for the 

assignment a of workload components to computational 

resources, where adaptations to the assignment can be cast 

as modifications to this representation. For example, if a 

workload consists of a collection of tasks, then an 

assignment a of tasks to sites may be represented as a 

vector v where each element vi represents task i, and 

each element value represents the execution site to which 

the task is assigned. 

 

Optimization Algorithm Selection: Select an optimization 

algorithm that, given values for ve, searches the space of 

possible assignments a with a view to maximizing the 

utility function; one benefit of the utilitybased approach is 

that standard optimization algorithms can be used to 

explore the space of alternative mappings. Note that one 

benefit of the methodology is that it decouples the 

problem of meeting certain objectives under certain 

constraints into a modeling problem (i.e., to come up with 

a utility function) and an optimization problem (where 

standard mathematical techniques can be used). 

 

Control Loop Implementation: Implement an autonomic 

controller [8] that: monitors the progress of the workload 

and/or properties of the environment of relevance to the 

utility function; analyses the monitored information to 

identify possible problems or opportunities for adaptation; 

plans an alternative workload execution strategy, by 

seeking to maximize Utility(w, a) in the context of the 

monitored values for ve;and updates the workload 

execution strategy where planning has identified an 

assignment that is predicted to increase utility. 

             Several researchers have reported the use of 

utility functions in autonomic computing, typically to 

support systems management tasks to the best of our 

understanding this is the first attempt to provide a 

methodology for the use of utility functions for adaptive 

workload execution. 

 

III. AUTONOMIC WORKFLOW EXECUTION 

 

A cloud may host computational services in a specific 

domain; for example, the CARMEN e-Science cloud 

provides a collection of data and analysis services for 

neuroscience, and applications are constructed using 

workflow enactment engines hosted within the cloud [20]. 

In such a setting, autonomic workflow execution must 

determine how best to map workflows to the resources 

provided by the cloud. 

 

3.1 Problem Statement 

 

A workload w consists of a set of workflow instances i, 

each of which consists of a collection of tasks, i.tasks, 

and is evaluated through an allocation of tasks to a set of 

execution sites. The role of the autonomic workload 

mapper is to adaptively assign the tasks to specific sites. 

 

3.2 Methodology Application 

 

The methodology from Section 2 can be applied in this 

example as follows. 

 

Utility Property Selection: Two utility properties are 

considered here, namely response time and profit. In 

practice, a single utility function is used by an autonomic 

workload mapper, but alternatives are shown to illustrate 

how the approach can be applied to address different 

system goals. 

 

Utility Function Definition: A utility function is defined 

for each of the properties under consideration. 

 For response time: 

 UtilityRT 

          w (w, a) = 1/(_i2wPRTw(i, ai)) where,  

                            w is the set of 

workflows 

                     a is a set of assignments for the workflows 

instances i in w 

    ai is the assignment for workflow instance i and 
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                           PRTw estimates the predicted response 

time of the workflow for  the given assignment. 

 

For profit: 

UtilityProfit 

           w (w, a) = _i2w(Income(i, ai) - 

EvaluationCost(i, ai)) where 

           Income estimates the income that will be received 

as a result of evaluating i                                                                                         

using allocation ai,and EvaluationCost(w, a) 
estimates the financial cost of the resources used to 

evaluate i. In this utility function, it is assumed that 

income is generated by evaluating workflows within a 

response time target, but that an EvaluationCost is 

incurred for the use of the resources to evaluate the 

workflows. As the income depends on the number of QoS 

targets met, which in turn depends on reponse time, the 

definition of Income is defined in terms of PRTw. In cloud 

computing, the evaluation cost could reflect the fact that 

at times of low demand all requests can be evaluated 

using (inexpensive) resources within the cloud, but that at 

times of high demand it may be necessary to purchase 

(expensive) cycles from another cloud in order to meet 

QoS targets. 

 

Cost Model Development: The cost model must 

implement PRTw(i, ai); the predicted response time of a 

workflow depends on the predicted execution times of 

each of the tasks on their assigned execution site, the time 

taken to move data between execution sites, the other 

assignments of workflows in w, etc. The description of a 

complete cost model is beyond the scope of this paper, but 

cost models for workflows 

have been widely studied (e.g. [12, 18, 21]). 

 

Representation Design: For each workflow instance i 2 

w, the assignment of the tasks i.tasks can be 

represented by a vector v where each element vi 

represents task i, and each element value represents the 

execution site to which the task is assigned. 

 

Optimization Algorithm Selection: The optimization 

algorithm seeks to maximize Utility(w, a) by 

exploring the space of alternative assignments a. As the 

assignments are represented as collections of categorical 

variables, each representing the assignment of a task to a 

specific execution site, an optimization algorithm must be 

chosen for searching such discrete spaces (e.g. [2]). 

 

Control Loop Implementation: In autonomic workflow 

management [13], there is a requirement to halt an 

existing workflow, record information on the results 

produced to date, deploy the revised workflow in such a 

way that it can make use of results produced to date, and 

continue with the evaluation.In practice, the utility 

functions described above prioritize different behaviors, 

and effective optimization can be expected to yield results 

that reflect those priorities. For example, UtilityRT w 

(w, a) will always seek the fastest available solution, 

even if this involves the use of costly computational 

resources. As a result, UtilityProfit w (w, a) will 

typically yield response times that are slower than those 

obtained by UtilityRT w (w, a),as it will only use 

expensive resources when these are predicted to give net 

benefits when considered together with the income they 

make possible. A detailed description of utility-based 

workflow execution in computational grids, including an 

experimental comparison of behaviors exhibited by 

different utility functions, is given by Lee et al. [12]. 

 

IV. AUTONOMIC QUERY WORKLOAD EXECUTION 

 

Early cloud data services are typically associated with 

fairly restrictive data access models with a view to 

enabling predictable behaviors, and do not provide full 

query evaluation [1]. However, more comprehensive data 

access services could provide access either to arbitrary 

query evaluation capabilities or to parameterized queries, 

thus giving rise to a requirement for query workload 

management, where collections of query evaluation 

requests can be managed by [11]: 

An admission controller, which seeks to identify and 

disallow access to potentially problematic requests; A 

query scheduler, which determines when jobs are released 

from a queue for execution; and An execution controller, 

which determines the level of resource allocated to 

queries while they are executing. 

 

In this paper how utility functions can be used to direct 

the behavior of an execution controller is discussed. In 

comparison with recent work on workload management, a 

utility-driven approach can provide relatively fine-grained 

control over queries;for example, Krompass et al. [10] 

describe an execution controller in which the actions 

carried out at query runtime are job-level (i.e., reprioritize, 

kill and resubmit),whereas here the optimization makes 

global decisions (taking into account all the queries in the 

workload) that adaptively determine the resource 

allocations of individual queries on the basis of (fine-

grained, collected per query) progress and load data. 

 

4.1 Problem Statement 

 

A workload w consists of a set of queries q 2 w, each of 

which are evaluated on a collection of execution 

sites,potentially exploiting both partitioned and pipelined 

parallelism. Each query is associated with a distribution 

policy dp(q), of the form [v1, v2, . . . , v|S|], 

where 0 _ vi _ 1 and (_|S| i=1vi) 2 {0, 1} where 

|S| is the number of available execution sites. If the sum 

of vi yields 1 then each vi represents the fraction of the 

workload that is to be evaluated on the ith site using 

partitioned parallelism, and if the sum is 0 this represents 

the suspension of the plan. Where vi is 0 for some i this 

represents the fact that execution site i is not being used 

for q. The role of the autonomic workload mapper in 

Figure 1 is to adaptively compute distribution policies for 
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each of the queries in the workload. 

 

4.2 Methodology Application 

 

The methodology from Section 2 can be applied in this 

example as follows. 

 

Utility Property Selection: Two utility properties are 

considered here, namely response time and number of 

QoS targets met. In the second case, we assume that each 

query is associated with a response time target. 

 

               

  
 
Utility Function Definition: A utility function is defined 

for each of the properties under consideration. For 

response time  

UtilityRT 

q (w, dp) = (1/_q2wPRTq(q, dp(q))) 

 

    where, w is the set of queries, dp is a distribution 

policy for the queries q 2 w, and PRTq estimates the 

predicted response time of the query for the given 

distribution policy. 

 

For quality of service: 

UtilityQoS 

q (w, a) = _q2wQoSEstimate(q, dp(q)) 

where QoSEstimate(q, dp(q)) estimates the likelihood 

that the query will meet its QoS target using the given 

distribution policy from its predicted response time PRTq. 

In practice, QoSEstimate(q, dp(q)) can be modeled 

using a curve such as that illustrated in Figure 2, which 

gives a score near to 1 for all queries estimated to be 

significantly within the target response time, and a score 

near to 0 for all queries estimated to take significantly 

longer than their target response time [3]. 

 

Cost Model Development: The cost model must 

implement PRTq(q, dp(q)) for queries during their 

evaluation,and can build on results on query progress 

monitors. 

 

Representation Design: For each query q 2 w, the 

distribution policy can be represented by a vector v where 

each element vi represents the fraction of the work for q 

that is to be assigned to execution site i. 

 

Optimization Algorithm Selection: The optimization 

algorithm seeks to maximize the utility function by 

exploring the space of distribution policies dp. As the 

assignments are represented as fractions, each 

representing the portion of the work to be assigned to a 

specific execution site, an optimization technique must be 

chosen for searching such spaces (e.g., sequential 

quadratic programming [6]). 

 

Control Loop Implementation: The implementation of the 

control loop must be able to suspend an evaluating query, 

relocate operator state to reflect changes to the 

distribution policy, and continue evaluation using the 

updated plan. A full description of such a protocol is 

provided in the paper on Flux [17]. 

                        

 
     
                  As an example of the behaviors exhibited by 

workflow execution management techniques, we have 

experimentally evaluated several such techniques using a 

simulator of a parallel query evaluation engine [15]. 

Figure 3 shows results for five different strategies: No 

Adapt, in which no runtime adaptation takes place; Adapt 

1 in which workloads are managed using action based 

control strategies (i.e. if-then rules based on Flux [17]) 

that seek to minimize response times by adapting 

whenever load imbalance is detected; Adapt 2 in which 

utility functions are used to minimize response times, as 

in UtilityRT q ; Adapt 3 in which Adapt 2 is applied only 

when it is predicted that response time targets will be 

missed; and Adapt 4 in which which utility functions are 

used to maximize the number of response time targets 

met, as in UtilityQoS q . In this experiment, four queries 

each containing a single join are submitted at the same 

time to a cluster containing 12 execution sites, where one 

of the sites is subject to periodic interference from other 

jobs broadly half of the time. In the experiment, the 

queries are associated with varying QoS targets (shown on 

the horizontal axis, with the more stringent targets to the 

left), and the number of queries meeting their reponse 

time targets is illustrated on the vertical axis. 

The following can be observed: 

Where no runtime workload execution adaptation takes 

place, no queries meet their QoS targets 

expressed in terms of response time.  

           (ii) Queries managed by UtilityQoS q continue to meet 

(some) stringent QoS targets where the other methods 

fail – this is because optimization selectively 
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discriminates against some queries where this is 

necessary to enable others to meet their targets. (iii) 

Queries managed by UtilityRT q meet more QoS 

targets than the action based strategies because the 

optimizer considers the combined costs or benefits of 

collections of adaptations in a way that is not 

considered by the action-based approaches.  

                   A broader and more detailed description of the 

approaches and associated experiments is provided by 

Paton et al. [15]. For the purposes of this paper, we note 

that optimization based on a utility function that aims to 

maximize the number of QoS targets met has been shown 

to out-perform action-based strategies and utility based 

strategies that target different goals, thus illustrating how 

utility based techniques can target application 

requirements.  

 

V. CONCLUSION 

 

This paper presents a utility-based approach for adaptive 

workload execution, and has illustrated its application to 

workloads consisting of workflows or queries. Recent 

research that explicitly focuses on data intensive cloud 

computing has addressed issues such as evaluation 

primitives (e.g. [14]) or the development of layered 

architectures (e.g. [4]). However, results from many 

different parts of the database community may usefully be 

revisited in the context of clouds; this paper considers 

workload management [11], and in particular the use of 

utility functions for coordinating workload execution. In 

this setting, a utility-based approach has been shown to be 

applicable to different types of workload, and utility-

based techniques can be applied both to coordinate 

adaptations at different granularities and to address 

context-specific optimization goals. These context-

specific goals allow utility functions to direct system 

behavior in a way that reflects the requirements of the 

contracts or SLAs that are likely to be prominent in cloud 

computing.  
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