
Volume IV, Issue VII, July 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 101

A Novel Approach for Autonomic Execution Based

Boosting Technique in Cloud Computing
Charlyn Pushpa Latha. G

Research Scholar, Karpagam University, Coimbatore, India

Abstract: Cloud computing provides services to potentially

numerous remote users with diverse requirements. Though

predictable performance can be obtained through the

provision of carefully delimited services,it is worthful to

identify applications in which a cloud might usefully host

services that support the composition of more primitive

analysis services or the evaluation of complex data analysis

requests.In such settings, a service provider must manage

complex and unpredictable workloads. This paper describes

how utility functions can be used to make explicit the

desirability of different workload evaluation strategies, and

how optimization can be used to select between such

alternatives. The approach is illustrated for workloads

consisting of workflows or queries.

I. INTRODUCTION

loud computing essentially provides services; shared

computational resources execute potentially diverse

requests on behalf of users who may have widely

differing expectations. In such a setting, someplace in the

architecture, decisions have to be made as to which

requests from which users are to be executed on which

computational resources, and when. From the perspective

of the service provider, such decision making may be

eased through the provision of restrictive interfaces to

cloud services, as discussed for cloud data services in the

Claremont Report on Database Research [1]: Early cloud

data services offer an API that is much more restricted

than that of traditional database systems, with a

minimalist query language and limited consistency

guarantees. This pushes more programming burden on

developers, but allows cloud providers to build more

predictable services,and to offer service level agreements

that would be hard to provide for a full-function SQL data

service. More work and experience will be needed on

several fronts to explore the continuum between today’s

early cloud data services and more full-functioned but

probably less predictable alternatives.This paper explores

part of this space, by describing an approach to workload

execution that is applicable to different types of workload

and that takes account of: (i) the properties of the

workload; (ii) the nature of the service level agreement

associated with user tasks; and (iii) competition for the

use of finite, shared resources.

 In so doing, functionalities that in future which are

explored may be supported within a cloud, rather than by

layering rich application functionality over lean cloud

interfaces, as in Brantner et al. [4].Wherever services are

provided, service users have expectations; Service Level

Agreements (SLAs) make explicit what expectations users

can realistically place on a service provider [16], and may

be associated with a charging model that determines the

remuneration associated with certain Qualities of Service

(QoS). Whether or not formal agreements are in place,

decisions must nonetheless be made that influence the

behaviors users experience, and service providers must

put in place mechanisms that make such decisions.In this

paper,there is an assumption that the abstract architecture

are illustrated in Figure 1, where an autonomic workload

mapper provides workload evaluation services

implemented within a cloud. The autonomic workload

mapper adaptively assigns tasks in the workload to

execution sites. Given some objective, such as to

minimize total execution times or, more generally, to

optimize for some QoS target (whether these objectives

are imposed by an SLA or not), the autonomic workload

mapper must determine which tasks to assign to each of

the available execution sites, revising the assignment

during workload execution on the basis of feedback on the

overall progress of the submitted requests.In this paper,

investigation of the use of utility functions [9] to make

explicit the desirability of the state of a system at a point

in time.

 In essence, a utility function maps each possible

state of a system to a common scale;the scale may

represent response times, numbers of QoS goals met,

income based on some charging model for the requests,

etc. In this setting, it is the goal of the autonomic

workload mapper to explore the space of alternative

mappings with a view to maximizing utility as measured

C

Volume IV, Issue VII, July 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 102

by the utility function.It is proposed that utility functions,

combined with optimization algorithms that seek to

maximize utility for a workload given certain resources,

may provide an effective paradigm for managing

workload execution in cloud computing. The remainder of

this paper is structured as follows. Section 2 describes a

methodology for developing utility based autonomic

workload execution. Sections 3 and 4 describe the

application of the methodology to workloads consisting of

sets of workflows and queries, respectively. Section 5

presents some conclusions.

II. UTILITY DRIVEN WORK LOAD EXECUTION

When a utility-based approach is adopted, the following

steps are followed by designers; instantiations of each of

these steps are detailed for workloads consisting of

workflows and queries in Sections 3 and 4, respectively.

Utility Property Selection: Identify the property that it

would be desirable to maximize – useful utility measures

may be cast in terms of response time, number of QoS

targets met, profit, etc.

Utility Function Definition: Define a function Utility(w,

a) that computes the utility of an assignment a of tasks to

execution sites for a workload w expressed in terms of the

chosen property – for workload mapping, such a function

can be expected to include expressions over variables ve

that describe the environment and the assignment a that

characterizes the mapping for the components of w from

abstract requests to tasks executing on specific execution

sites.

Cost Model Development: Develop a cost model that

predicts the performance of the workload given the

information about the environment ve and assignment a,

taking into account the costs associated with adaptations.

Representation Design: Design a representation for the

assignment a of workload components to computational

resources, where adaptations to the assignment can be cast

as modifications to this representation. For example, if a

workload consists of a collection of tasks, then an

assignment a of tasks to sites may be represented as a

vector v where each element vi represents task i, and

each element value represents the execution site to which

the task is assigned.

Optimization Algorithm Selection: Select an optimization

algorithm that, given values for ve, searches the space of

possible assignments a with a view to maximizing the

utility function; one benefit of the utilitybased approach is

that standard optimization algorithms can be used to

explore the space of alternative mappings. Note that one

benefit of the methodology is that it decouples the

problem of meeting certain objectives under certain

constraints into a modeling problem (i.e., to come up with

a utility function) and an optimization problem (where

standard mathematical techniques can be used).

Control Loop Implementation: Implement an autonomic

controller [8] that: monitors the progress of the workload

and/or properties of the environment of relevance to the

utility function; analyses the monitored information to

identify possible problems or opportunities for adaptation;

plans an alternative workload execution strategy, by

seeking to maximize Utility(w, a) in the context of the

monitored values for ve;and updates the workload

execution strategy where planning has identified an

assignment that is predicted to increase utility.

 Several researchers have reported the use of

utility functions in autonomic computing, typically to

support systems management tasks to the best of our

understanding this is the first attempt to provide a

methodology for the use of utility functions for adaptive

workload execution.

III. AUTONOMIC WORKFLOW EXECUTION

A cloud may host computational services in a specific

domain; for example, the CARMEN e-Science cloud

provides a collection of data and analysis services for

neuroscience, and applications are constructed using

workflow enactment engines hosted within the cloud [20].

In such a setting, autonomic workflow execution must

determine how best to map workflows to the resources

provided by the cloud.

3.1 Problem Statement

A workload w consists of a set of workflow instances i,

each of which consists of a collection of tasks, i.tasks,

and is evaluated through an allocation of tasks to a set of

execution sites. The role of the autonomic workload

mapper is to adaptively assign the tasks to specific sites.

3.2 Methodology Application

The methodology from Section 2 can be applied in this

example as follows.

Utility Property Selection: Two utility properties are

considered here, namely response time and profit. In

practice, a single utility function is used by an autonomic

workload mapper, but alternatives are shown to illustrate

how the approach can be applied to address different

system goals.

Utility Function Definition: A utility function is defined

for each of the properties under consideration.

 For response time:

 UtilityRT

 w (w, a) = 1/(_i2wPRTw(i, ai)) where,

 w is the set of

workflows

 a is a set of assignments for the workflows

instances i in w

 ai is the assignment for workflow instance i and

Volume IV, Issue VII, July 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 103

 PRTw estimates the predicted response

time of the workflow for the given assignment.

For profit:

UtilityProfit

 w (w, a) = _i2w(Income(i, ai) -

EvaluationCost(i, ai)) where

 Income estimates the income that will be received

as a result of evaluating i

using allocation ai,and EvaluationCost(w, a)
estimates the financial cost of the resources used to

evaluate i. In this utility function, it is assumed that

income is generated by evaluating workflows within a

response time target, but that an EvaluationCost is

incurred for the use of the resources to evaluate the

workflows. As the income depends on the number of QoS

targets met, which in turn depends on reponse time, the

definition of Income is defined in terms of PRTw. In cloud

computing, the evaluation cost could reflect the fact that

at times of low demand all requests can be evaluated

using (inexpensive) resources within the cloud, but that at

times of high demand it may be necessary to purchase

(expensive) cycles from another cloud in order to meet

QoS targets.

Cost Model Development: The cost model must

implement PRTw(i, ai); the predicted response time of a

workflow depends on the predicted execution times of

each of the tasks on their assigned execution site, the time

taken to move data between execution sites, the other

assignments of workflows in w, etc. The description of a

complete cost model is beyond the scope of this paper, but

cost models for workflows

have been widely studied (e.g. [12, 18, 21]).

Representation Design: For each workflow instance i 2

w, the assignment of the tasks i.tasks can be

represented by a vector v where each element vi

represents task i, and each element value represents the

execution site to which the task is assigned.

Optimization Algorithm Selection: The optimization

algorithm seeks to maximize Utility(w, a) by

exploring the space of alternative assignments a. As the

assignments are represented as collections of categorical

variables, each representing the assignment of a task to a

specific execution site, an optimization algorithm must be

chosen for searching such discrete spaces (e.g. [2]).

Control Loop Implementation: In autonomic workflow

management [13], there is a requirement to halt an

existing workflow, record information on the results

produced to date, deploy the revised workflow in such a

way that it can make use of results produced to date, and

continue with the evaluation.In practice, the utility

functions described above prioritize different behaviors,

and effective optimization can be expected to yield results

that reflect those priorities. For example, UtilityRT w

(w, a) will always seek the fastest available solution,

even if this involves the use of costly computational

resources. As a result, UtilityProfit w (w, a) will

typically yield response times that are slower than those

obtained by UtilityRT w (w, a),as it will only use

expensive resources when these are predicted to give net

benefits when considered together with the income they

make possible. A detailed description of utility-based

workflow execution in computational grids, including an

experimental comparison of behaviors exhibited by

different utility functions, is given by Lee et al. [12].

IV. AUTONOMIC QUERY WORKLOAD EXECUTION

Early cloud data services are typically associated with

fairly restrictive data access models with a view to

enabling predictable behaviors, and do not provide full

query evaluation [1]. However, more comprehensive data

access services could provide access either to arbitrary

query evaluation capabilities or to parameterized queries,

thus giving rise to a requirement for query workload

management, where collections of query evaluation

requests can be managed by [11]:

An admission controller, which seeks to identify and

disallow access to potentially problematic requests; A

query scheduler, which determines when jobs are released

from a queue for execution; and An execution controller,

which determines the level of resource allocated to

queries while they are executing.

In this paper how utility functions can be used to direct

the behavior of an execution controller is discussed. In

comparison with recent work on workload management, a

utility-driven approach can provide relatively fine-grained

control over queries;for example, Krompass et al. [10]

describe an execution controller in which the actions

carried out at query runtime are job-level (i.e., reprioritize,

kill and resubmit),whereas here the optimization makes

global decisions (taking into account all the queries in the

workload) that adaptively determine the resource

allocations of individual queries on the basis of (fine-

grained, collected per query) progress and load data.

4.1 Problem Statement

A workload w consists of a set of queries q 2 w, each of

which are evaluated on a collection of execution

sites,potentially exploiting both partitioned and pipelined

parallelism. Each query is associated with a distribution

policy dp(q), of the form [v1, v2, . . . , v|S|],

where 0 _ vi _ 1 and (_|S| i=1vi) 2 {0, 1} where

|S| is the number of available execution sites. If the sum

of vi yields 1 then each vi represents the fraction of the

workload that is to be evaluated on the ith site using

partitioned parallelism, and if the sum is 0 this represents

the suspension of the plan. Where vi is 0 for some i this

represents the fact that execution site i is not being used

for q. The role of the autonomic workload mapper in

Figure 1 is to adaptively compute distribution policies for

Volume IV, Issue VII, July 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 104

each of the queries in the workload.

4.2 Methodology Application

The methodology from Section 2 can be applied in this

example as follows.

Utility Property Selection: Two utility properties are

considered here, namely response time and number of

QoS targets met. In the second case, we assume that each

query is associated with a response time target.

Utility Function Definition: A utility function is defined

for each of the properties under consideration. For

response time

UtilityRT

q (w, dp) = (1/_q2wPRTq(q, dp(q)))

 where, w is the set of queries, dp is a distribution

policy for the queries q 2 w, and PRTq estimates the

predicted response time of the query for the given

distribution policy.

For quality of service:

UtilityQoS

q (w, a) = _q2wQoSEstimate(q, dp(q))

where QoSEstimate(q, dp(q)) estimates the likelihood

that the query will meet its QoS target using the given

distribution policy from its predicted response time PRTq.

In practice, QoSEstimate(q, dp(q)) can be modeled

using a curve such as that illustrated in Figure 2, which

gives a score near to 1 for all queries estimated to be

significantly within the target response time, and a score

near to 0 for all queries estimated to take significantly

longer than their target response time [3].

Cost Model Development: The cost model must

implement PRTq(q, dp(q)) for queries during their

evaluation,and can build on results on query progress

monitors.

Representation Design: For each query q 2 w, the

distribution policy can be represented by a vector v where

each element vi represents the fraction of the work for q

that is to be assigned to execution site i.

Optimization Algorithm Selection: The optimization

algorithm seeks to maximize the utility function by

exploring the space of distribution policies dp. As the

assignments are represented as fractions, each

representing the portion of the work to be assigned to a

specific execution site, an optimization technique must be

chosen for searching such spaces (e.g., sequential

quadratic programming [6]).

Control Loop Implementation: The implementation of the

control loop must be able to suspend an evaluating query,

relocate operator state to reflect changes to the

distribution policy, and continue evaluation using the

updated plan. A full description of such a protocol is

provided in the paper on Flux [17].

 As an example of the behaviors exhibited by

workflow execution management techniques, we have

experimentally evaluated several such techniques using a

simulator of a parallel query evaluation engine [15].

Figure 3 shows results for five different strategies: No

Adapt, in which no runtime adaptation takes place; Adapt

1 in which workloads are managed using action based

control strategies (i.e. if-then rules based on Flux [17])

that seek to minimize response times by adapting

whenever load imbalance is detected; Adapt 2 in which

utility functions are used to minimize response times, as

in UtilityRT q ; Adapt 3 in which Adapt 2 is applied only

when it is predicted that response time targets will be

missed; and Adapt 4 in which which utility functions are

used to maximize the number of response time targets

met, as in UtilityQoS q . In this experiment, four queries

each containing a single join are submitted at the same

time to a cluster containing 12 execution sites, where one

of the sites is subject to periodic interference from other

jobs broadly half of the time. In the experiment, the

queries are associated with varying QoS targets (shown on

the horizontal axis, with the more stringent targets to the

left), and the number of queries meeting their reponse

time targets is illustrated on the vertical axis.

The following can be observed:

Where no runtime workload execution adaptation takes

place, no queries meet their QoS targets

expressed in terms of response time.

 (ii) Queries managed by UtilityQoS q continue to meet

(some) stringent QoS targets where the other methods

fail – this is because optimization selectively

Volume IV, Issue VII, July 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 105

discriminates against some queries where this is

necessary to enable others to meet their targets. (iii)

Queries managed by UtilityRT q meet more QoS

targets than the action based strategies because the

optimizer considers the combined costs or benefits of

collections of adaptations in a way that is not

considered by the action-based approaches.

 A broader and more detailed description of the

approaches and associated experiments is provided by

Paton et al. [15]. For the purposes of this paper, we note

that optimization based on a utility function that aims to

maximize the number of QoS targets met has been shown

to out-perform action-based strategies and utility based

strategies that target different goals, thus illustrating how

utility based techniques can target application

requirements.

V. CONCLUSION

This paper presents a utility-based approach for adaptive

workload execution, and has illustrated its application to

workloads consisting of workflows or queries. Recent

research that explicitly focuses on data intensive cloud

computing has addressed issues such as evaluation

primitives (e.g. [14]) or the development of layered

architectures (e.g. [4]). However, results from many

different parts of the database community may usefully be

revisited in the context of clouds; this paper considers

workload management [11], and in particular the use of

utility functions for coordinating workload execution. In

this setting, a utility-based approach has been shown to be

applicable to different types of workload, and utility-

based techniques can be applied both to coordinate

adaptations at different granularities and to address

context-specific optimization goals. These context-

specific goals allow utility functions to direct system

behavior in a way that reflects the requirements of the

contracts or SLAs that are likely to be prominent in cloud

computing.

REFERENCES

[1] R. Agrawal et al. The claremont report on database research.

ACM SIGMOD Record, 37(3):9–19, 2008.
[2] C. Audet and J. E. Dennis. Mesh adaptive direct search

algorithms for constrained optimization. SIAM J.on

Optimization, 17(1):188–217, 2006.
[3] M.N. Bennani and D.A. Menasce. Resource allocation for

autonomic data centres using analytic performance models.

In Proc. 2nd ICAC, pages 229–240. IEEE Press, 2005.
[4] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and T.

Kraska. Building a database on s3. In SIGMOD Conference,

pages 251–264, 2008.
[5] S. Chaudhuri, V.R. Narasayya, and R. Ramamurthy.

Estimating Progress of Long Running SQL Queries.In Proc.

SIGMOD, pages 803–814, 2004.
[6] R. Fletcher. Practical Methods of Optimization. John

Wiley&Sons, 1987.

[7] A. Gounaris, N.W. Paton, A.A.A. Fernandes, and R.
Sakellariou. Self-monitoring query execution for adaptive

query processing. Data Knowl. Eng., 51(3):325–348, 2004.

[8] J.O. Kephart and D.M. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36(1):41–50, 2003.

[9] J.O. Kephart and R. Das. Achieving self-management via
utility functions. IEEE Internet Computing,11(1):40–48,

2007.

[10] S. Krompass, U. Dayal, H. A. Kuno, and A. Kemper.

Dynamic workload management for very large data

warehouses: Juggling feathers and bowling balls. In VLDB,

pages 1105–1115, 2007.

[11] S. Krompass, A. Scholz, M.-Cezara Albutiu, H. A. Kuno, J.

L. Wiener, U. Dayal, and A. Kemper. Quality of service-
enabled management of database workloads. IEEE Data Eng.

Bull., 31(1):20–27, 2008.

[12] K. Lee, N.W. Paton, R. Sakellariou, and A.A.A. Fernandes.
Utility Driven Adaptive Workflow Execution.In Proc. 9th

CCGrid. IEEE Press, 2009.

[13] K. Lee, R. Sakellariou, N.W. Paton, and A.A.A. Fernandes.
Workflow Adaptation as an Autonomic Computing Problem.

In Proc. 2nd Workshop on Workflows in Support of Large-

Scale Science (WORKS 07),Proc. of HPDC & Co-Located
Workshops, pages 29–34. ACM Press, 2007.

[14] H. Liu and D. Orban. Gridbatch: Cloud computing for large-

scale data-intensive batch applications. In CCGRID, pages
295–305. IEEE Computer Society, 2008.

[15] N.W. Paton, Marcelo A. T. de Arag˜ao, and A.A.A.

Fernandes. Utility-driven adaptive query workload execution.
In Submitted for Publication, 2009.

[16] R. Sakellariou and V. Yarmolenko. Job scheduling on the
grid: Towards sla-based scheduling. In L. Grandinetti, editor,

High Performance Computing and Grids in Action, pages

207–222. IOS, 2008.
[17] M.A. Shah, J.M. Hellerstein, S.Chandrasekaran, andM.J.

Franklin. Flux: An adaptive partitioning operator for

continuous query systems. In Proc. ICDE, pages 353–364.
IEEE Press, 2003.

[18] P. Shivam, S. Babu, and J. S. Chase. Active and accelerated

learning of cost models for optimizing scientific applications.
In VLDB, pages 535–546, 2006.

[19] W.E.Walsh, G. Tesauro, J.O. Kephart, and R. Das. Utility

functions in autonomic systems. In Proc. ICAC,pages 70–77.
IEEE Press, 2004.

[20] P. Watson, P. Lord, F. Gibson, P. Periorellis, and G. Pitsilis.

Cloud Computing for e-Science with CARMEN.In 2nd
Iberian Grid Infrastructure Conference Proceedings, pages

3–14, 2008.

[21] M.Wieczorek, A. Hoheisel, and P. Prodan. Towards a general
model of themulti-criteria workflow scheduling on the grid.

Future Generation Computer Systems, 25(3):237–256, 2009.

