
Volume IV, Issue VIII, August 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 73

Map Reduce Programming for Electronic Medical

Records Data Analysis on Cloud using Apache

Hadoop, Hive and Sqoop

 Sreekanth Rallapalli

, Gondkar RR

*

#
Research Scholar, R&D Center, Bharathiyar University, Coimbatore, Tamilnadu

*Professor, Department of IT, AIT, Bangalore

Abstract—Health care organizations now a day’s made a

strategic decision to turn huge medical data coming from

various sources into competitive advantage. This will help the

health care organizations to monitor any abnormal

measurements which require immediate reaction. Apache

Hadoop has emerged as a software framework for distributed

processing of large datasets across large clusters of

computers. Hadoop is based on simple programming model

called MapReduce. Hive is a data warehousing framework

built on top of hadoop. Hive is designed to enable easy data

summarization, ad-hoc querying and analysis of large volume

of data. As health care and Electronic Medical Records

(EMR) are generating huge data, it is necessary to store,

extract and load such big data using a framework which

support distributed processing. Cloud computing model

provides efficient resources to store and process the data. In

this paper we propose a MapReduce programming for

Hadoop which can analyze the EMR on cloud. Hive is used to

analyze large data of healthcare and medical records. Sqoop

is used for easy data import and export of data from

structured data stores such as relational databases, enterprise

datawarehouses and NoSQL systems.

Keywords—Hadoop;MapReduce;EMR;Hive;Healthcare

I. APACHE HADOOP FOR BIG DATA

ser Interactions online generated a huge data and in

order to extend the services to scale the collection of

data companies like Google, Facebook, Yahoo and many

other companies have scaled up the capabilities of

traditional information Technology architectures. In order

to store, extract, transform and load these Big data these

companies build their own core infrastructure components

rapidly and various papers were published for many of

components. All these components were open source.

Apache Hadoop has been standardized for managing a

large volumes of unstructured data [1].

Hadoop is an open source distributed software platform for

storing and processing data. We can store petabytes of data

reliably on tens of thousands of servers while scaling

performance cost-effectively by adding inexpensive nodes

to the cluster. MapReduce programming will help the

programmers to solve parallel-data problems for which the

data set can be sub-divided into smaller parts and

processed. The system splits data into multiple chunks

which is assigned a map that process data in parallel. The

map task reads input data as a set of (key,value) pairs and

produce a transformed set of (key,value) pair as output.

A master node has the job of distributing the work to

worker nodes. The worker node just does one thing and

returns the work back to the master node (i.e data

processing). Once the master gets the work from the

worker nodes, the reduce step takes over and combines all

the work. By combining the work you can form some

answer and ultimately output.(i.e data collection and

digesting).

Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned

and released with minimal management effort or service

provider interaction [4]. Most of the health care

organizations today are moving to cloud architecture to

store and process the huge medical data.

II. HADOOP ARCHITECTURE

The Hadoop architecture is shown in the Fig1. The Hadoop

distributed File system (HDFS) is a distributed file system

providing fault tolerance and designed to run on

commodity hardware. HDFS provides high throughput

access to application data and is suitable for applications

that have a large data sets. Hadoop provides a distributed

file system called HDFS that can store data across

thousands of servers, and a means of running work

(Map/Reduce jobs) across those machines, which move

code to data. HDFS have master/slave architecture.

Hadoop runs on large clusters of commodity machines or

on cloud computing services. Hadoop scales linearly to

handle larger data by adding more nodes to the cluster.

U

Volume IV, Issue VIII, August 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 74

Fig 1: Hadoop Architecture with one master node and two slave nodes

Hadoop has 5 daemons or services running during the

process. The 5 daemons are namenode, datanode,

secondary namenode, jobtracker, tasktraker.

III. HIVE

Hive is a component of the hadoop. It was initially

introduced by facebook in the year 2007 in order to full fill

the requirements with respect to ETL (Extract

Transformation Load) jobs. Later it becomes hadoop sub

project. Hive is a data warehousing frame work built on

top of the hadoop [2]. It is a hive default table. These tables

will be completely managed by hive ware house. All

manage tables are stored in following default directory

/user/hive/warehouse. Fig2. Shows the hive architecture.

Fig2: Hive Architecture

IV. MAPREDUCE PROGRAMMING FOR EMR

MapReduce uses parallel programming which in turn

improves performance and efficiency. Processing is broken

up into parts and done concurrently. Instruction of each

part runs on a separate CPU while many processors are

connected [3]. Identification of set of tasks which can run

concurrently is important. Input files are split into M pieces

on distributed file systems. Intermediate files are created

from map tasks are written to local disks. Output files are

written to distributed file systems. Table 1 shows the main

goal of MapReduce programming

Table 1: Map Reduce Goal

In this section we take Electronic medical records of large

number of patients and then write the MapReduce

program/algorithm that find the occurrence of patient

medical history in a large files [6].

package org.myorg;

import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import

org.apache.hadoop.mapreduce.lib.input.FileInputFo

rmat;

import

org.apache.hadoop.mapreduce.lib.input.TextInputFo

rmat;

import

org.apache.hadoop.mapreduce.lib.output.FileOutput

Format;

import

org.apache.hadoop.mapreduce.lib.output.TextOutput

Format;

public class medicalrecord {

 public static class Map extends

Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new

IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,

Context context) throws IOException,

InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new

StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class Reduce extends Reducer<Text,

IntWritable, Text, IntWritable> {

 public void reduce(Text key,

Iterator<IntWritable> values, Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

Volume IV, Issue VIII, August 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 75

 public static void main(String[] args) throws

Exception {

 Configuration conf = new Configuration();

 Job job = new Job(conf, "medicalrecord");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);

 job.setReducerClass(Reduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new

Path(args[0]));

 FileOutputFormat.setOutputPath(job, new

Path(args[1]));

 job.waitForCompletion(true);

 }

}

Fig 3: Java source code for MapReduce to find the occurance of patients

medical data

The MapReduce algorithm is used to find out the medical

record occurrences in the file. In the above example the

map input key is the provided data chunk with a value of 1.

The map output key is the word itself and the value is 1

everytime the word exists in the processed data chunk. The

reducers perform the aggregation of the key-values pair

output from the maps word. MapReduce programs are

usually written in java and can also be coded in languages

such as C++, perl, python, Ruby, R.

V. LOADING ELECTRONIC MEDICAL RECORDS

INTO HIVE

In this section we will see how the EMR data which is

stored as a text file in unstructured format can be loaded

into Hive and then processed.

hive> CREATE EXTERNAL TABLE IF NOT EXISTS

emr (

patientname STRING,

patientid STRING,

test1 STRING,

test2 STRING,test3 STRING,test4 STRING) ROW

FORMAT DELIMITED FIELDS TERMINATED BY '/t'

LOCATION '/user/botho/emr';

>load data local inpath '/home/botho/MEDICAL' into table

emr;

This command will load the text file containing all medical

records and format it into hive table.

Hive>create database EMR;

Hive>use database EMR;

Hive>select * from emr;

If the text file contains a millions of records it is sent to

hive table and using sqoop the dataset being transferred is

sliced up into different partitions and a map-only job is

launched with individual mappers responsible for

transferring a slice of this dataset.

VI. RESULTS

We have first started with Hadoop 5 Services such as

Namenode, datanode, Job tracker, task tracker and

Secondary name node. All 5 deamons should be running in

order to work further with hive, and sqoop.

Fig4 shows the Hadoop deamons are running

Fig 4 Hadoop Daemons

Fig 5 shows the database created for Electronic medical

records using hive and created a table using hive. The data

is loaded into hive by using a text file which has records.

Fig 6 shows the display of EMR records using a query.

Sqoop is used to export the bulk data of electronic medical

records to Hadoop system and using map-reduce

programming which is responsible to for transferring the

slice of this dataset.

Fig 5 Loading of EMR Records

Fig 6 : Display of EMR records using query

Volume IV, Issue VIII, August 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 76

VII. CONCLUSION

Sqoop is a bulk data transfer tool that allows easy

import/export of data from structured datastores such as

relational databases, enterprise data warehouses, and

NoSQL systems. Using Sqoop, you can provision the data

from an external system into HDFS, as well as populate

tables in Hive and HBase. Similarly, Sqoop integrates with

the workflow coordinator Apache Oozie (incubating),

allowing you to schedule and automate import/export

tasks. Sqoop uses a connector-based architecture which

supports plugins that provide connectivity to additional

external systems. In this paper we have taken bulk

Elecronic medical records of unstructured data and then

uses hive, to import the data into hadoop and then process

it and further this is exported to external databases on

cloud for further analysis.

REFERENCES

[1]. Dean J, Ghemawat S: MapReduce: simplified data processing on large

clusters. Commun ACM 2008, 51(1):107–113.

[2]. Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H,

Wyckoff P, Murthy R: Hive: a warehousing solution over a map-reduce

framework. Proc VLDB Endowment 2009, 2(2):1626–1629.

[3]. Nguyen AV, Wynden R, Sun Y: HBase, MapReduce, and Integrated

Data Visualization for Processing Clinical Signal Data. In AAAI Spring

Symposium: Computational Physiology: 2011; 2011.

[4]. AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud

Hosting. [http://aws.amazon.com/ec2/]

[5]. Sadasivam GS, Baktavatchalam G: A novel approach to multiple

sequence alignment using hadoop data grids. In Proceedings of the

2010 Workshop on Massive Data Analytics on the Cloud: 2010, ACM;

2010:2.

[6]. Wang F, Lee R, Liu Q, Aji A, Zhang X, Saltz J: Hadoop-gis: A high

performance query system for analytical medical imaging with

mapreduce. In Atlanta – USA: Technical report, Emory University;

2011:1–13.

[7]. Musen MA, Middleton B, Greenes RA: Clinical decision-support

systems. In Biomedical Informatics. New York – USA: Springer;

2014:643–674.

[8]. Mazurek M: Applying NoSQL Databases for Operationalizing

Clinical Data Mining Models. In Beyond Databases, Architectures,

and Structures. New York – USA: Springer; 2014:527–536.

[9]. Youssef AE: A framework for secure healthcare systems based on
Big data analytics in mobile cloud computing environments. Int J

Ambient Syst Appl 2014, 2(2):1–11.

[10]. Jeffrey Dean and Sanjay Ghemawat, " MapReduce: a flexible data

processing tool," Communications of the ACM, Volume 53 Issue

1, January 2010, Pages 72-77

[11]. MapReduce: Simplified Data Processing on Large Clusters.

Available at http://labs.google.com/papers/mapreduceosdi04.pdf

Appendix-I

Map Reduce Programming Flow for EMR

