
Volume IV, Issue IX, September 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 61

Load Balancing in Cloud Computing Systems using

Divisible Load Scheduling
Haridas Kataria

1
, Vipul Pant

2

1
Lecturer CSE, Govt. Polytechnic for Women, Sirsa,

2
Lecturer CSE, Govt. Polytechnic for Women, Sirsa,

Abstract - Load balancing in cloud computing systems is a

big challenge now. As it is not always practically feasible or

cost efficient to maintain one or more idle services just as to

fulfill the required demands, jobs cannot be assigned to

appropriate servers and clients individually for efficient load

balancing. Here some uncertainty is attached while jobs are

assigned.

Our aim is to provide an evaluation study of some of the

methods of load balancing in large scale Cloud systems,

demonstrating different distributed algorithms for load

balancing and to improve the different performance

parameters for the clouds of different sizes.

Keywords- Cloud Computing, Load Balancing, throughput,

latency

I. INTRODUCTION

loud computing” is a term, which involves

virtualization, distributed computing, networking,

software and web services. It includes fault tolerance, high

availability, scalability, flexibility, reduced overhead for

users, reduced cost of ownership, on demand services etc.

Central to these issues lies the establishment of an effective

load balancing algorithm. The load can be CPU load,

memory capacity, delay or network load. Load balancing is

the process of distributing the load among various nodes of

a distributed system to improve both resource utilization

and job response time while also avoiding a situation

where some of the nodes are heavily loaded while other

nodes are idle or doing very little work.

Cloud computing is an emerging computing paradigm

which is rapidly gaining consideration in the IT industry.

Since cloud computing still is in its infancy, there are

many open research challenges. Cloud computing is an on

demand service in which shared resources, information,

software and other devices are provided according to the

clients requirement at specific time. It’s a term which is

generally used in case of Internet. The whole Internet can

be viewed as a cloud. Capital and operational costs can be

cut using cloud computing. Always a distributed solution

is required. Because it is not always practically feasible or

cost efficient to maintain one or more idle services just as

to fulfill the required demands. Jobs cannot be assigned to

appropriate servers and clients individually for efficient

load balancing as cloud is a very complex structure and

components are present throughout a wide spread area.

Figure 1: A cloud is used in network diagrams to depict the

Internet.

Load balancing is a process of reassigning the total load

to the individual nodes of the collective system to make

resource utilization effective and to improve the response

time of the job, simultaneously removing a condition in

which some of the nodes are over loaded while some

others are under loaded. A load balancing algorithm

which is dynamic in nature does not consider the previous

state or behavior of the system, that is, it depends on the

present behavior of the system.

The important things to consider while developing such

algorithm are :

- estimation of load,

- comparison of load,

- stability of different system,

- performance of system,

- interaction between the nodes,

- nature of work to be transferred,

- selecting of nodes and

- many other ones.

This load considered can be in terms of CPU load, amount

of memory used, delay or Network load.

Goals of Load balancing:

i. To improve the performance substantially.

ii. To have a backup plan in case the system fails

even partially.

iii. To maintain the system stability.

iv. To accommodate future modifications in the

system.

“C

Volume IV, Issue IX, September 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 62

Figure 2: Interaction among components of a load balancing algorithm

This paper is divided into four sections. The Section I

give the introduction, Section II represents the

architecture of Cloud, Section III represents the proposed

work & result evaluation, and finally Section IV

concludes the work done.

II. ARCHITECTURE

The architecture of a cloud computing system is usually

structured as a set of layers.

Figure 3: The architecture of a cloud system.

A typical architecture of a cloud system is shown in

figure. At the lowest level of the hierarchy there is the

hardware layer, which is responsible for managing the

physical resources of the cloud system, such as servers,

storage, network devices, power and cooling systems. On

the top of the hardware layer, resides the infrastructure

layer, which provides a pool of computing and storage

resources by partitioning the physical resources of the

hardware layer by means of virtualization technologies.

Built on top of the infrastructure layer, the platform layer

consists of operating systems and application frameworks.

The purpose of this layer is to minimize the burden of

deploying applications directly onto infrastructure

resources by providing support for implementing storage,

database and business logic of cloud applications. Finally,

at the highest level of the hierarchy there is the

application layer, which consists of cloud applications.

III. PROPOSED WORK

Here it is assumed that a cloud consists of many networks

and each of those networks has different topology, so, to

understand the concept of load balancing, the star

topology is taken.

Implementation of a Distributed Load in a Star Network

Step 1: Method for Processing a Task:

Assume that there is a three station that is working on a

star network.

Station 1 denoted as a process of a receiving a tasks.

Station 2 denoted as a computing process.

Station 3 denoted as a transmission process.

All of the three station connected with a computer worker

and denoted as-

r € {1, 2, ……….., R}

In the process of receiving a task at station 1, the task

flow arriving at the receiver is a poison process and the

entire process of receiving task from master worker is

exponential distribution with a mean value of M1,r task

per second.

The processing at station 2 is an exponential distribution

with a mean value of M2,r task per second.

The Transmission of the result back to the master worker

at the station 3 is performed in a manner that the results

are packetized into data packets with exponential

distribution. Hence, the transmission of task at the station

3 is exponentially distributed with a mean value of M3,r

task per second.

A computing worker r is operating based on the following

procedures:

• The computing worker r is a tandem connected

sequential processing chain.

• The master worker does not assign a new task to the

computing worker r if an application task is in process at

Station 1, even if Station 2 and/or Station 3 are

empty.

• An application task is blocked when it completes the

process at any Station and finds that the next Station is

busy.

Step 2: Steady State Diagram with Computing Tasks.

q0 state defines System is empty.

q4 state defines Application task is in process at Station 1

only.

q6 state defines Application tasks are in process at Station

1 and 2 only.

q7 state defines Application tasks are in process at Station

1, 2 and 3.

q5 state defines Application tasks are in process at Station

1 and 3 only.

q1 state defines Application task is in process at Station 3

only.

q3 state defines Application tasks are in process at Station

2 and 3 only.

Volume IV, Issue IX, September 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 63

q2 state defines Application task is in process at Station 2

only.

 M1,r λ M1,x

λ

M2,rMM1,r

M2,x M1,r M2,r

 M2,r M2,r

Figure 4: Steady State Diagram

q10B state defines Application task is blocked at the output

of Station 1 because Station 2 is occupied.

q11B state defines Application task is blocked at the output

of Station 1 because both Station 2 and 3 are occupied.

q0B1 state defines Application task is blocked at the output

of Station 2 because Station 3 is occupied.

q1B1 state defines Application task is blocked at the output

of Station 2 because both Station 1 and 3 are occupied.

Figure shows a Markov model for the operating process in

the computing worker, where all possible operating states

and transitions between all states are presented. When the

computing worker is operating in steady-state, its steady

state equations (Equations (1)–(12)) can be obtained by

the following procedures: Considering the state “q0“,

which is directly related to the two states “q4” and “q1“.

When the computing worker in state “q0” is starting to

receive a new task from the master worker, it transits to

state “q4” at the rate of λ, which is an outbound flow from

the state “q0”. On the other hand, when the computing

worker is in state “q1“ completes the process of

transmitting data back to the master worker, it transits to

state “q0” at the rate of M3,r, which is an inbound flow into

the state “q0“. When the operation is stable, the outbound

flows from the state “q0” is equal to the inbound flow to

the state “q0“. Consequently, we obtain Equation (1) as:

αrλpq0 = M3rpq1

in which the left side represents the outbound flow and

right side represents the inbound flow. Here α signifies the

action being taken and symbol p indicates the probability.

Similarly, applying the same strategy to the rest of the

states, we can obtain the steady-state Equations (2)–(12)

for all the corresponding states. The steady-state

equations for this multidimensional Markov processing

chain are then as follows:

αrλpq0 = M3,rpq1 …………… (1)

M1,rpq4 = αrλpq0 + M3,rpq5 … (2)

(αrλ + M2,r)pq2 = M1,rpq4 + M3,r (pq3 + pq0B1)

…… (3)

(αrλ + M3,r)pq1 = M2,rpq2 …… (4)

(M1,r+ M3,r)pq5 = αrλpq1 + M2,r (pq6 + pq10B)

…………… (5)

(αrλ + M2,r+ M3,r)pq3 = M1,rpq5

…………… (6)

(M1,r+ M2,r+ M3,r)pq7 = αrλ(pq3 + pq0B1)

 …………… (7)

(M1,r+ M2,r)pq0 = αrλpq2 + M3,r (p7 + pq11B + pq1B1)

………… (8)

(αrλ + M3,r)pq0B1 = M2,r pq3

 …………… (9)

(M1,r+ M3,r)pq1B1 = M2,r (pq7 + pq11B)

…………… (10)

(M2,r+ M3,r)pq11B = M1,r (pq7 + pq1B1)

…………… (11)

M2,rpq10B = M1,rpq7

 …………… (12)

Step 3: Processing Time at Computing worker

 The calculation of the processing time at each

computing worker allows a cloud provider to predict the

usage pay on each computing worker. The processing

time for a task to be successfully completed in computing

worker r is the sum of the processing times taken for that

task to be successfully completed in Stations 1, 2 and 3.

The average processing time on a computing worker is

equivalent to the ratio of the time spent for all the tasks to

be successfully completed by the computing worker r

over the average of the sizes of all the tasks assigned to

the computing worker r.

 Tr =
𝑈𝑟

αrλ

 =
 n1+n2+n3 pn 1n2n3

αrλ

The distributed network may follow different topologies.

The tasks are distributed over the whole network. One

topological network connects with the other through a

gateway. One of the physical topologies forming a cloud

is shown in the diagram. This distributed network is a

cloud because some of the nodes are Mobile clients, some

of them are Thin and some are Thick clients. Some of

them are treated as masters and some are treated as slaves.

There are one or more data centers distributed among the

various nodes which keeps track of various computational

details. Our aim is to apply the Divisible Load Scheduling

Theory(DLT) proposed for the clouds of different sizes

and analyze different performance parameters for

different algorithms under DLT and compare them..

IV. CONCLUSION

This paper describes that how divisible load scheduling

theory can be applied in case of clouds. It also explains

the proposed system model, the various notations used

and analysis of measurement and reporting time. Here the

inverse link speed b is taken as 1 and the inverse

measurement speed a is 0.5 for both the cases. Number of

master computers is taken to be constant equal to 50. The

time is smaller in case of simultaneous reporting as

compared to sequential reporting. It is because in case of

q10

B

q
7
7
q
q

7

q1B

1

B1

q0B1

q11B

q0

q1

q2

q3

q4

q5 q6

Volume IV, Issue IX, September 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 64

sequential reporting, some of the slaves receive almost

zero load from its master. Number of effective slaves in

this case is less as compared to the simultaneous reporting

case. Hence with increase in no. of slaves with respect to

a master, the finishing time remains almost same in case

of sequential reporting whereas in case of simultaneous

reporting, the finishing time decreases for the increase in

no. of slaves corresponding to a single master. The

finishing time can be improved by increasing the number

of slaves under a master computer in a cloud only to some

extent before saturation in case of sequential measurement

and sequential reporting strategy. But finishing time can

be decreased significantly in case of simultaneous

measurement start and simultaneous reporting termination

by increasing the no. of slaves under a single master

computer.

REFERENCES

[1]. Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Cloud

Computing A Practical Approach, TATA McGRAW-HILL Edition

2010.

[2]. Martin Randles, David Lamb, A. Taleb-Bendiab, A Comparative
Study into Distributed Load Balancing Algorithms for Cloud

Computing, 2010 IEEE 24th International Conference on

Advanced Information Networking and Applications Workshops.
[3]. Mladen A. Vouk, Cloud Computing Issues, Research and

Implementations, Proceedings of the ITI 2008 30th Int. Conf. on

Information Technology Interfaces, 2008, June 23-26.
[4]. Ali M. Alakeel, A Guide to Dynamic Load Balancing in

Distributed Computer Systems, IJCSNS International Journal of

Computer Science and Network Security, VOL.10 No.6, June
2010.

[5]. Martin Randles, Enas Odat, David Lamb, Osama Abu- Rahmeh

and A. Taleb-Bendiab, “A Comparative Experiment in Distributed
Load Balancing”, 2009 Second International Conference on

Developments in eSystems Engineering.

[6]. Peter S. Pacheco, ”Parallel Programming with MPI”, Morgan
Kaufmann Publishers Edition 2008

[7]. Mequanint Moges, Thomas G.Robertazzi, ”Wireless Sensor

Networks: Scheduling for Measurement and Data Reporting”,
August 31, 2005

[8]. Boost C++ Libraries. Available: http:www.boost.org.

[9]. General algebraic modeling system (GAMS). Available:
http://www.gams.com.

[10]. Google AppEngine: Run your web apps on Google’s

infrastructure. Available: http://code.google.com/appengine/.
[11]. IBM Smart Cloud. Available: http://www.ibm.com/cloud-

computing.

[12]. JTC1/SC22/WG21 - The C++ Standards Committee.
http://www.open-std.org/jtc1/sc22/wg21/.

[13]. Linear algebra package (lapack). Available:

http://www.netlib.org/lapack/.
[14]. Microsoft connected service framework

(CSF).Available:http://www.microsoft.com/serviceproviders/soluti

ons/connectedservicesframework.mspx.
[15]. Kiam Heong Ang, Gregory Chong, and Yun Li. PID control

system analysis, design, and technology. IEEE Transactions on

Control Systems Technology,13(4):559–576, 2005.
[16]. Panos J. Antsaklis and Anthony N. Michel. Linear Systems.

Birhaüser, Boston, 2006.

[17]. Danilo Ardagna, Barbara Panicucci, Marco Trubian, and Li Zhang.
Energyaware autonomic resource allocation in multi-tier

virtualized environments. IEEE Transactions on Services

Computing, 99(PrePrints), 2010.
[18]. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.

Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A.

Patterson, Ariel
[19]. Jr. Arthur E. Bryson and Yu-Chi Ho. Applied Optimal Control:

Optimization, Estimation, and Control. Taylor & Francis, revised

edition, 1975.
[20]. Jerry Banks, John S. Carson, II, Barry L. Nelson, and David M.

Nicol. Discrete-Event System Simulation. Prentice Hall, 5th
edition, 2010.

[21]. Jacques F. Benders. Partitioning procedures for solving mixed-

variables programming problems. Numerische Mathematik,
4(1):238–252, 1962.

[22]. John R. Birge and François Louveaux. Introduction to Stochastic

Programming. Springer Science+Business Media, LLC, 2nd
edition, 2011.

[23]. S. Bittanti, P. Bolzern, and M. Campi. Exponential convergence

of a modified directional forgetting identification algorithm.
System Control Letter, 14:131–137, 1990.

[24]. Peter Bloomfield. Fourier analysis of time series: An introduction.

Wiley- Interscience, 2nd edition, 2000.
[25]. Peter Bodík, Rean Griffith, Charles Sutton Armando Fox, Michael

Jordan, and David Patterson. Statistical machine learning makes

automatic control practical for Internet datacenters. In Proc. of the
2009 USENIX Conf. on Hot Topics in Cloud Computing

(HotCloud’09), 2009.

[26]. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer,
Michael Champion, Chris Ferris, and David Orchard. Web

Services Architecture. Working Group Note NOTE-ws-arch-

20040211, W3C Web Services Activity, Feb 2004.

http://www.gams.com/
http://code.google.com/appengine/
http://www.netlib.org/lapack/
http://www.microsoft.com/serviceproviders/solutions/
http://www.microsoft.com/serviceproviders/solutions/
http://www.microsoft.com/serviceproviders/solutions/

