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Abstract: Using one scalar potential and one vector potential and 

interpreting the vector potential suitably for the radial magnetic 

field the nonrelativistic problem of scattering of an electric 

charge by a fixed dyon has been studied and scattering solutions 

and cross section have been obtained. 
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I. INTRODUCTION 

 
he subject of magnetic charge has been of great interest 

since the ingenious work of Dirac [1] in order to make the 

Maxwell’s equations symmetric and to explain the observed 

quantization of electric charge. Later Schwinger [2, 3] and 

Zwanziger [4] extended this idea to dually charged particles 

namely dyons and developed the quantum field theory of these 

particles. Today magnetic monopoles and dyons have become 

the intrinsic parts of all current grand unified theories  [5] with 

enormous potential importance in connection with their roles 

in catalyzing proton decay [6,7],the quark confinement 

problem of QCD [8,9] and C P violation [10].Monopoles and 

dyons are also supposed to play important roles in the origin 

of elementary particle masses. Nambu’s empirical mass 

formula [11] is shown to be based upon the existence of Dirac 

magnetic charge. From the constituent quark model of Mac 

Gregor [12], the experimental data support the existence of a 

70 MeV mass quantum of magnetic charge g= (
2

137
) ne . 

In our recent paper[13] giving a new interpretation to 

vector potential we had undertaken the study of interaction of 

an electric charge in the radial field of a dyon and derived the 

equation of motion through Lagrangian and Hamiltonian 

formulations. It was seen that the system possesses an 

additional spinning top like angular momentum besides the 

orbital angular momentum. The energy eigen values of bound 

states were also analysed. The paper [14] was devoted to see 

the relativistic effects in the bound states of the system. 

 

Non relativistic theories of scattering of electric and 

magnetic charge have been developed by Schwinger et al [15], 

Zwanziger [4], and Goldhaber [16]. In this paper we have 

undertaken the study of nonrelativistic scattering of an electric 

charge in the radial field of a fixed dyon using one scalar and 

one vector potential for the interaction and obtained the 

scattering solutions and differential cross section. 

 

 
II. BEHAVIOUR OF VECTOR POTENTIAL IN 

RADIAL MAGNETIC FIELD 

The usual electrodynamics, in absence of magnetic charge and 

corresponding current density for all situations of 

electromagnetic fields, uses the relations,   

 

rHA



2

1
  (2.1) 

and       HA


     ,   (2.2) 

while in the case of radial field of magnetic field  the relation 

(2.1) looses meaning and so happens with the relation 

(2.2).Therefore for a non vanishing vector potential we use the 

following option to define the vector potential as, 

 
TrHA



2

1
        (2.3) 

where  Tr


   is a vector transverse to the vector  r


    i.e 

)(ˆ)(ˆ)(ˆ jiikkjT rrkrrjrrir 


 
(2.4) 

so that, 

0. Trr


          
    (2.5) 

and the field can be obtained as, 

HAT




     
   (2.6)                                                            

The relation (2.6) could be easily obtained using eq. (2.3) for 

A


and identity for vector triple product. In the relation (2.6)  

T 
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A


 is a function of ir , jr , kr while T  is a transformed 

operator in new relative coordinates i , j , k defined as, 

i = jr - kr  , j = kr - ir  , k = ir - jr .    (2.7) 

In the new relative coordinate the components of T  

operator have been described in our earlier paper [13]. In view 

of the relation (2.6)                                                                                                                                

 . T( )A


  0       

which reveals the presence of magnetic charge density.       

                                                                                                                                                                                               

III. HAMILTONIAN OF THE SYSTEM AND 

PARABOLIC COORDINATES 

 

Our problem is concerned with the scattering of an electric 

charge 1e  in the radial field of a fixed dyon having electric 

charge 2e  and magnetic charge 2g  .The coupling of 1e  and  

2e charges takes place through a scalar potential   and that 

for 2g  and 1e  through a vector potential A


at any space 

point. The non relativistic Hamiltonian of the system is written 

as, 

H =
m2

1
p( - 1e A


)

2
 +  ( r


)     (3.1) 

= 
m

p

2

2

 + intV      

                       (3.2) 

where, 

intV = - 
m

e1 p( . A ) +  ( r


)      (3.3) 

In writing (3.3) we have eliminated the term containing 
2A  

being small and used the commutators  

 [ ip , jA ]=0   (3.4)                                                                                                                        

mentioned in our earlier paper [13].We have used the natural 

units c =  =1, the same would follow in the subsequent 

description. Using the relation (2.3) for vector potential  intV  

is obtained as, 

intV = 
r


     (3.5) 

where   

  =  ( 12 +
m

12
( p


. n̂ ) )    (3.6)  

and  12 = 1e 2e ,  12 =
2

1
1e 2g ,   n̂ = Trr ˆˆ    

 .     

From here onwards we shall use the notation   for 12 and 

 for 12  to save the space. If we take z-axis along the wave 

vector of the incoming wave, then keeping in view the axial 

symmetry of the problem, we can choose the wave function to 

be a function of the variables  , and   defined by the 

transformations with cartisian coordinates as,  

 =  r   z        ,        = r  z    (3.7)    

x Cos  , y Sin   , 

)(
2

1
 z

                                             

(3.8) 

and  

 = 2 r
2

2 Sin  ,  r2
2

2 Cos     ,  (3.9) 

with spherical polar coordinates. 

The Schrodinger wave equation under the potential (3.5) takes 

the form, 


m2

1
   

 

4
{




(






)+




(






) } + 

2

21

 


      

 


2  =

m

k

2

2

     .               (3.10) 

Because of the symmetry of the scattering potential scattering 

solutions are to be   independent therefore we shall not carry 

the   dependent derivative further. 

IV. SCATTERING SOLUTIONS OF SCHRODINGER 

EQUATION AND SCATTERING CROSS 

SECTION 
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Let us now consider a beam of monoenergtic charge particles 

impinging upon the target potential given by equation (3.5) 

with kinetic energy 
m

k
E

2

22
  ( E  >> )(int rV ),where k


 

is the propagation vector in the direction of incident beam (

k


) = 


mv
where v is the eigen value of velocity operator 

associated with projectile particles. For the particle incident 

along positive z axis the wave function would be written as, 

  = e 
ikz 

   (4.1) 

which has been normalized for one particle per unit volume so 

that the incident flux is    )(
m

k
v


  particles per unit area per 

unit time. In accordance with the Dirac’s veto we consider the 

singularity line of the target monopole along the negative z-

direction. For the potential (3.5) there exist following two 

solutions of the equation (3.10),  

),(  
= exp [ 

2

1
)(  ik ]  )(F  (4.2) 

which correspond to a sum of a plane wave and outgoing 

spherical waves in the asymptotic limits, and  

),(  
= exp [  

2

1
)(  ik ] )(F  (4.3) 

which is asymptotically the sum of a plane wave and incoming 

spherical wave. We can obtain  
  formally from 

  by 

changing to the complex conjugate of 
 and then 

substituting  -z for  z. The whole space can be scanned either 

by changing both variables  and  or by varying one and 

keeping other variable fixed. In choosing the solution given by 

equation (4.2) we vary the variable  keeping   fixed 

whereas in the solution (4.3) we vary   and keep fixed. 

Since the outgoing solution 
  has the asymptotic form 

therefore (4.2) would be the acceptable solution whose 

substitution in wave equation (3.10) leads to the following 

form,                                                           

   )(F  + ( 1  ik  )  )(F      k F   = 0                 

                                                                               (4.4) 

where,  

  m (  
k

nv )ˆ.(


 
 )          (4.5) 

In writing   using the expression (3.6) for we have 

considered vmp


  . The equation (4.4) is the equation for 

the confluent hyper geometric function of argument ik , 

whence  

               )(F  c 1,( iF , ik )   (4.6) 

Using the standard form of asymptotic expansion for the hyper 

geometric function ),,( zF  we can write )(F   in 

following form for  >>1,  

)(F  c exp (
2

1
  )

 



i

ki

1

]lnexp[ 
(

2

1
ik


 )

  
 



iik

kiiki

1

)lnexp(




               (4.7) 

where we have used the relation, 

 (  i k   )
i

 = exp [ 
2

1
 + ki ln  ]  (4.8) 

Substituting the asymptotic form of )(F (4.7) in
 ),( 

described by equation (4.2) and changing  coordinate to 

spherical polars, the asymptotic expression for the complete 

function, 

),(  r 



 



i

c

1

2

1
exp( 

[1 

2
sin2 2

2


ikr


]

)](lnexp[ zrkiikz            
r

A )(
exp ikr( 

kri 2ln )      ,      

           (4.9) 

where  

)(A 

 

 
2

12

]
2

ln2exp[1

2 



Sinik

Sinii





      (4.10) 

           

 The first term in (4.9) is the distorted incoming wave

)exp(ikz , which reveals the fact that the potential (3.5) of 

dyon has a long range effect. The flux density due to this wave 
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for r  suggest that the normalization constant c must be 

considered  

   c 
k

m
  i1

2
exp(





 )        ,            (4.11) 

so that the assumption of one particle per unit volume is 

preserved at large distances.  

The second term in (4.9) corresponds to an outgoing spherical 

wave which is also distorted by a logarithmic term in its 

phase. The usual definition yields the following result for 

differential scattering cross section 

)(S  )(* A )(A 

2
4 42

2


Sink


     . 

 Substituting  from equation (4.5) we get  

  )(S 

2
16

)]ˆ.([

42

2





SinE

nv



       , 

which is the modified Rutherford’s scattering formula for 

Dyon-electric charge system. 

V. DISCUSSION 

In section-2 vector potential was properly interpreted for a 

system of an electric charge in the field of dyon. Since the 

Schrodinger equation uses scalar functions therefore vector 

potential provided an equivalent scalar potential depending on 

the magnetic coupling parameter and velocity component 

along n̂ direction. The Coulombian part describing electric-

electric charge coupling is as usual. Since it is a long range 

potential it was supposed that the hyper geometric series 

method would be proper to deal with .The scattering cross 

section depends on electric –electric coupling and magnetic 

coupling parameter. The term containing magnetic coupling 

parameter is also velocity dependent as it should. It seems that 

the velocity component along n̂  )ˆ( Trr


  unit vector 

contribute to the scattering cross section. Considering 0  

the absence of magnetic charge the differential cross section is 

reduced to the expression for Rutherford scattering cross-

section. Our result differs from that of Zwanziger [4] in the 

sense that it contains the sum of square of the two terms where 

as ours one is square of the sum of two terms. Zwanziger 

result depends on the consideration of 
2

1

r
potential where as 

in our case it is 
r

1
varying potential. 
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