A Note on G_a Partitions of n

Dr. K. Hanumareddy¹, Gudimella V R K Sagar²

¹Department of Mathematics, Hindu College, Acharya Nagarjuna University, Guntur (Dt). ^{2L}/Mathematics, Govt.Polytechnic, Ponnur, Guntur (Dt).

Abstract: Andrews derived generating function for the number of smallest parts of partitions of positive integer n. Hanumareddy and Manjusri [5] derived generating function for the number of smallest parts of partitions of n by using r - partitions of n. In this chapter we defined the partitions of n with smallest parts of the form a^{k-1} where a, k are natural numbers, defined as $G_a partitions$ of n. In this chapter we derive generating function for $G_a spt(n)$ by using $r - G_a partitions$ of n. We also derive generating function for $sumG_a spt(n)$.

Keywords: Partition, r-partition, G_a partition, Smallest part of the G_a partition.

Subject classification: 11P81 Elementary theory of Partitions.

I. INTRODUCTION

et $G_a\xi(n)$ be denote the set of all *partitions* of n with smallest parts are of the form a^{k-1} . Let $G_ap(n)$ be the cardinality of $G_a\xi(n)$ for $n \in N$ and $G_ap(0)=1$. If $1 \le r \le n$, write $G_ap_r(n)$ for the number of *partitions* of n in $G_a\xi(n)$ each consisting of exactly r parts, i.e. r - *partitions* of n in $G_a\xi(n)$. If $r \le 0$ or $r \ge n$, we write $G_ap_r(n)=0$. Let $G_ap(k,n)$ represent the number of *partitions* of n in $G_a\xi(n)$ using natural numbers at least as large as k only. Let the *partitions* in $G_a\xi(n)$ be denoted by G_a *partitions*.

Let $G_a spt(n)$ be denotes the number of smallest parts including repetitions in all *partitions* of n in $G_a\xi(n)$ and $sumG_a spt(n)$ be denotes the sum of the smallest parts. For $i \ge 1$, let us adopt the following notation on the lines of [3].

 $G_a m_s(\lambda) =$ number of smallest parts of λ in $G_a \xi(n)$.

$$G_a spt(n) = \sum_{\lambda \in \xi(n)} G_a m_s(\lambda)$$

For example: $G_a\xi(8)$: $G_ap(8) = 21$ $G_aspt(8) = 56$ $\underline{8}, 7 + \underline{1}, 6 + \underline{2}, \underline{4} + \underline{4}, 6 + \underline{1} + \underline{1}, 5 + 2 + \underline{1}, 4 + 3 + \underline{1}, 4 + \underline{2} + \underline{2}, 3 + 3 + \underline{2}, 5 + \underline{1} + \underline{1} + \underline{1}, 4 + 2 + \underline{1} + \underline{1}, 3 + 3 + \underline{1} + \underline{1}, 3 + 2 + 2 + \underline{1}, \underline{2} + \underline{2} + \underline{2} + \underline{2} + \underline{2}, 4 + \underline{1} + \underline{1} + \underline{1} + \underline{1}, 3 + 2 + \underline{1} + \underline{1} + \underline{1}, 4 + 2 + \underline{2} + \underline{1} +$

Generating function

Existing generating functions are given below

Function

	8
$p_r(n)$	$rac{q^r}{\left(q ight)_r}$
$p_r(n-k)$	$\frac{q^{r+k}}{\left(q\right)_r}$

number of divisors of the form
$$a^{k-1}$$

sum of divisors of the form a^{k-1}

$$\sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{\left(1-q^{a^{k-1}}\right)}$$

$$\sum_{b=1}^{\infty} \frac{a^{k-1}q^{a^{k-1}}}{\left(1-q^{a^{k-1}}\right)}$$
(1.1)

where
$$(q)_{k} = \prod_{n=1}^{k} (1-q^{n})$$
 for $k > 0$, $(q)_{k} = 1$ for $k = 0$ and $(q)_{k} = 0$ for $k < 0$.
and $(a)_{n} = (a;q)_{n} = (1-a)(1-aq)(1-aq^{2})...(1-aq^{n-1})$ [2]
II. GENERATING FUNCTION FOR $G_{a}spt(n)$

The generating function for the number of smallest parts of all partitions of positive integer *n* is derived by Andrews. By utilizing r - partitions of *n*, we propose a formula for finding the number of smallest parts of the form a^{k-1} .

$$G_{a}spt(n) = \sum_{k=1}^{\infty} \sum_{t=1}^{\infty} p\left(a^{k-1}, n-t.a^{k-1}\right) + \left\{d(n) | \text{ divisors of form } a^{k-1}\right\}$$
Proof: Let $n = (\lambda_{1}, \lambda_{2}, ..., \lambda_{r}) = \left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}}, \left(a^{k-1}\right)^{\alpha_{l}}\right)$ be any $r - G_{a} partition$ of n with l distinct parts and $\mu_{l} = a^{l-1} \forall l$.
Case 1: Let $r > \alpha_{l} = t$ which implies $\lambda_{r-t} > a^{k-1}$
Subtract all a^{k-1} 's, we get $n - t.a^{k-1} = \left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}}\right)$
Hence $n - t.a^{k-1} = \left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}}\right)$ is a $(r-t) - G_{a} partition f n - t.a^{k-1}$ with $l - 1$ distinct parts and each part is greater than or equal to $a^{k-1} + 1$.
Case 2: Let $r > \alpha_{l} > t$ which implies $\lambda_{r-t} = a^{k-1}$
Omit a^{k-1} 's from last t places, we get $n - t.a^{k-1} = \left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}}, \left(a^{k-1}\right)^{\alpha_{l-1}}\right)$
Hence $n - t.a^{k-1} = \left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}} = \left(\mu_{1}^{\alpha_{l}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}} + 1\right)^{k-1}$
Hence $n - t.a^{k-1} = \left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}} = \left(\mu_{1}^{\alpha_{l}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}} + 1\right)^{k-1}$
Hence $n - t.a^{k-1} = \left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, ..., \mu_{l-1}^{\alpha_{l-1}} + 1\right)^{k-1}$ is a $(r-t) - partition of $n - t.a^{k-1}$ with l distinct parts and the least part is a^{k-1} .$

Now we get the number of $r - G_a$ partitions with smallest part a^{k-1} that occurs more than t times among all $r - G_a$ partitions of n is $f_{r-t}(a^{k-1}, n-t.a^{k-1})$.

Case 3: Let $r = \alpha_1 = t$ which implies all parts in the *partition* are equal.

The number of G_a partitions of *n* with equal parts is equal to the number of divisors of *n* which are of form a^{k-1} . Since the number of divisors of *n* which are of form a^{k-1} is $\{d(n) | \text{ which are of form } a^{k-1}\}$ the number of G_a partitions of *n* with

all parts are equal and is of form a^{k-1} is $\{d(n) | \text{ divisors of form } a^{k-1}\}$ where $\beta = \begin{cases} 1 & \text{ if } \frac{n}{r} = a^{k-1} \\ 0 & \text{ otherwise} \end{cases}$.

From cases (1), (2) and (3) we get $r - G_a$ partitions of *n* with smallest part a^{k-1} that occurs *t* times is

$$f_{r-t}(a^{k-1}, n-t.a^{k-1}) + p_{r-t}(a^{k-1}+1, n-t.a^{k-1}) + \beta$$
$$= p_{r-t}(a^{k-1}, n-t.a^{k-1}) + \beta \text{ where } \beta = \begin{cases} 1 & \text{if } \frac{n}{r} = a^{k-1} \\ 0 & \text{otherwise} \end{cases}$$

Hence the number of smallest parts in G_a partitions of *n* is

$$G_a spt(n) = \sum_{k=1}^{\infty} \sum_{t=1}^{\infty} p(a^{k-1}, n-t.a^{k-1}) + \left\{ d(n) \mid \text{divisors of form } a^{k-1} \right\}$$

2.2. Theorem: $p_r(a^{k-1}+1,n) = p_r(n-a^{k-1}.r)$

Proof: Let $n = (\lambda_1, \lambda_2, ..., \lambda_r), \lambda_i > a^{k-1} \quad \forall i \text{ be any } r - partition \text{ of } n$.

Subtracting a^{k-1} from each part, we get $n - a^{k-1}$. $r = (\lambda_1 - a^{k-1}, \lambda_2 - a^{k-1}, ..., \lambda_r - a^{k-1})$

Hence
$$n - a^{k-1} \cdot r = (\lambda_1 - a^{k-1}, \lambda_2 - a^{k-1}, ..., \lambda_r - a^{k-1})$$
 is a $r - G_a$ partition of $n - a^{k-1} \cdot r$

Therefore the number of $r - G_a$ partitions of *n* with parts greater than or equal to $a^{k-1} + 1$ is $p_r(n - a^{k-1} \cdot r)$.

2.3. Theorem:
$$\sum_{n=0}^{\infty} G_a spt(n) q^n = \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^n(q)_{n-1}}{(1-q^n)}.$$

Proof: From theorem (2.1) we have

www.ijltemas.in

$$G_{a}spt(n) = \sum_{r=1}^{\infty} \sum_{t=1}^{\infty} p(a^{k-1}, n-t.a^{k-1}) + \{d(n) | \text{ divisors of form } a^{k-1}\}$$

first replace $a^{k-1} + 1$ by a^{k-1} then replace *n* by $n - t \cdot a^{k-1}$ in theorem (2.2.) where

$$= \sum_{t=1}^{\infty} \sum_{r=1}^{\infty} \sum_{k=1}^{\infty} p_r \left(n - t \cdot a^{k-1} - r \left(a^{k-1} - 1 \right) \right) + \left\{ d(n) \mid \text{divisors of form } a^{k-1} \right\}$$

 $\{d(n) | \text{divisors of form } a^{k-1}\}$ is the number of positive divisors of n which are form a^{k-1} . From (1.1)

$$\begin{split} &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \frac{q^{r+t,a^{k-1}+r(a^{k-1}-1)}}{(q)_r} + \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{1-q^{a^{k-1}}} \\ &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \frac{q^{t,a^{k-1}}}{(q)_r} + \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{1-q^{a^{k-1}}} \\ &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} q^{t,a^{k-1}} \left[\sum_{r=1}^{\infty} \frac{(q^{a^{k-1}})^r}{(q)_r} \right] + \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{1-q^{a^{k-1}}} \\ &= \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{(1-q^{a^{k-1}})} \left[\left(1 + \sum_{r=1}^{\infty} \frac{(q^{a^{k-1}})^r}{(q)_r} \right) - 1 \right] + \sum_{r=1}^{\infty} \frac{q^{a^{k-1}}}{1-q^{a^{k-1}}} \\ &= \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{(1-q^{a^{k-1}})} \left[\left(1 + \sum_{r=1}^{\infty} \frac{(q^{a^{k-1}})^r}{(q)_r} \right) - 1 \right] + \sum_{r=1}^{\infty} \frac{q^{a^{k-1}}}{1-q^{a^{k-1}}} \\ &= \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{(1-q^{a^{k-1}})} \left[\left(1 + \sum_{r=1}^{\infty} \frac{(q^{a^{k-1}})^r}{(q)_r} \right) \right] \\ &= \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{(1-q^{a^{k-1}})} \prod_{r=0}^{\infty} \left(\frac{1}{1-q^r q^{a^{k-1}}} \right) \\ &= \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}}{(1-q^{a^{k-1}})} \prod_{r=0}^{\infty} \left(\frac{1}{1-q^{r+a^{k-1}}} \right) \\ &= \frac{1}{(q)_{\infty}} \sum_{k=1}^{\infty} \frac{q^{a^{k-1}}(q)_{a^{k-1}-1}}{(1-q^{a^{k-1}})} \\ &= \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^{a^{k-1}}(q)_{a^{k-1}-1}}{(1-q^{a^{k-1}})}} \\ &= \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^{a^{k-1}}(q)_{a^{k-1}-1}}{(q)^{k-1}}} \\ &= \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^{a^{k-1}}(q)_{a^{k-1}-1}}}{(q)^{k-1}}} \\ &= \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^{a^{k-1}}(q)_{a^{k-1}-1}}}{(q)^{k-1}}} \\ &= \frac{1}{(q)^{k-1}}} \\ &= \frac{1}{(q)^{k-1}} \sum_{n=1}^{\infty} \frac{q^{k-1}(q)_{a^{k-1}-1}}}{(q)^{k-1}}} \\ &= \frac{1}{(q)^{k-1}}} \\ &= \frac{1}{(q)^{k-1}} \sum_{n=1}^{\infty} \frac{q^{k-1}(q)_{a^{k-1}-1}}}{(q)^{k-1}}} \\ &= \frac{1}{(q)^{k-1}} \sum_{n=1}^{\infty} \frac{q^{k-1}(q)_{a^{k-1}-1}}}{(q)^{k-1}}} \\ &= \frac{1}{(q)^{k-1}}} \\ &= \frac{1}{(q)^{k-1}} \sum_{n=1}^{\infty} \frac{q^{k-1}(q)$$

from [2]

2.4. Corollary: The generating function for $A_c(n)$, the number of smallest

parts of the G_a partitions of n which are multiples of c is

$$\sum_{n=0}^{\infty} A_{c}(n) q^{n} = \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^{c.a^{n-1}}(q)_{c.a^{n-1}-1}}{\left(1-q^{c.a^{n-1}}\right)}$$

2.5. *Theorem*: The generating function for the sum of smallest parts of the

 G_a partitions of n is

$$\sum_{n=0}^{\infty} sum G_a spt(n) q^n = \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{a^{n-1} q^{a^{n-1}}(q)_{a^{n-1}-1}}{\left(1-q^{a^{n-1}}\right)}$$

REFERENCES

- [1]. S.Ahlgren, K.Bringmann, J.Lovejoy.1-adic properties of smallest parts functions. Adv.Math., 228(1): 629-645, 2011.
- [2]. G. E. Andrews, The theory of partitions.
- [3]. G. E. Andrews, The number of smallest parts in the partitions of n. J.Reine Angew.Math.624:133-142,2008.
- [4]. K.Bringmann, J.Lovejoy and R.Osburn. Automorphic properties of generating functions for generalized rank moments and Durfee symbols. Int.Math.Res.Not.IMRN,(2):238-260,2010
- [5]. K.Hanumareddy, A.Manjusri The number of smallest parts of partitions of n. IJITE., Vol.03, Issue-03, (March 2015), ISSN:2321-1776