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Abstract:- This paper deals with proposing an algorithm that can 

solve DLP in polynomial time in certain groups. It is an extension 

to the general algorithm proposed by Douglas Long and 

AviWigderson in their paper “How Discreet is the Discrete 

Log?", except that the main algorithm proposed in this paper 

works without needing to find any square roots.  The first 

algorithm proposed is a general purpose algorithm, and solves 

DLP in the general case, but no method has been located to be 

able to employ that. The second algorithm solves DLP in specific 

groups, particularly modulo Fermat Prime or Psuedo Fermat 

Prime groups. This has been discussed in detail, and can be used 

readily. It may also be used to reveal a certain number of bits of 

the exponent in other groups. The exponent-construction based 

algorithm may also find uses in solving DLP in other groups as 

well, by checking the coprimality of the exponent (and various 

functions of the exponent) against the factors of N-1. All 

exponentiations done in relation to the generator are modular. 

This does not apply to exponentiation of 2 to define the group 

size, or the complexity analysis. 
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I. INTRODUCTION 

 

n integer x that solves the equation g
x
=a, where both g 

and a are elements of a finite group, is referred to as a 

discrete logarithm. It is the analogue of an ordinary logarithm 

in finite groups. There is no known way to efficiently compute 

the solution of the Discrete Logarithm Problem. 

In this paper we deal with finite cyclic groups that are 

modulo a prime, and the generator g is chosen to be a 

primitive root modulo that prime. 

A primitive root modulo a prime is an element that 

generates a finite cyclic group (by exponentiation of the 

generator, in multiplicative groups) in which all elements are 

distinct. 

 

II. FERMAT PRIMES 

 

Fermat Primes are primes of the form 22𝑛 +1. 

This paper discusses an algorithm that works for primes of 

the form 2
m
+1 (and some other forms, this is discussed later). 

However, it has been shown that if 2
m
+1 is a prime, then m 

must be a power of 2. So far, the only known Fermat Primes 

are 3, 5, 17, 257, 65537. It is speculated that no new Fermat 

Primes will be found with current computational hardware 

limitations. 

Numbers of this form which are not prime are considered 

“Pseudo Fermat Primes" as they satisfy the properties of the 

prime number in Fermat's Little Theorem. Hence these 

numbers may also be used as a finite group limit for DLP. 

 

III. SQUARE ROOTS IN FINITE FIELDS AND THEIR 

RELATION TO THE DLP 

 

Let us assume there is a way to check if any number modulo 

N (a prime) is even or odd, and there is a way to perform an 

integer division on that number. 

Therefore, if x is even, x' takes the value :
x

2
 

And, if x is odd, x' takes the value 
x−1

2
 . 

A recursive formulation to find x in O(log{N}) time is 

discussed below : 

f(g
x
, obj K, integeri) 

Step 1: Base Condition. ifg
x
 = 1, reconstruct x with the 

operation history stored in K. Reconstruct(K,i), exit function 

Step 2: if x is even, do steps 3-4 

Step 3: k[i+1]=even 

Step 4: call f(𝑔
𝑥

2 , k,i+1) 

Step 5: if x is odd, do steps 6-7 

Step 6: k[i+1]=odd 

Step 7: callf(𝑔
𝑥−1

2 ,k,i+1) 

 

The time complexity of this algorithm is of the order of  logN 

times the complexity of even/odd checking. 

One way to check if x is even or odd is to raiseg
x
 to the power 

𝑁−1

2
. 

For x=even, this gives the value 1. 

For x=odd, this gives the value N-1. 

 

However the division of x by 2 is not directly possible. One 

solution would have been to take the square root of g
x
or g

x-

1
modulo N (if x is a quadratic residue). However, this would 

give us both g
x’

 and -g
x’

, that is, basically, g
x’

and 

𝑔
𝑁−1

2
+𝑥′

,where x' is defined as above, for even/odd x. If the 

problem of finding the “best square root" could be solved 

in polynomial time, DLP would be solved. 
 

IV. THE SPECIAL CASE ALGORITHM 

 

A 
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Let us assume that N is of such a form that we are able to raise 

g to the power 
𝑁−1

2𝑘
. 

till x has been found, hence x <2
k
 

The algorithm is described as follows. Initial values of k and a 

are 1 and 0 respectively. The value g
x
is available. 

 

f(k,a) 

Step 1: Base condition. Check if g
x-a

=1. If yes, return a. 

Step 2: Raise g
x-a

to the power 
𝑁−1

2𝑘
and check if it is equal to 

one. If yes, return f(k+1,a) 

Step 3: If not equal to one, return f(k,a+2𝑘−1). 

 

Values of 
𝑁−1

2𝑘
 and 2𝑘upto a certain recursive step are stored in 

memory, to reduce any additional complexity arising due to 

the calculation of these. 

 

4.1 Complexity Analysis and Correctness 

 

The aim of the algorithm is to perform integer division 

without actually dividing. There are a maximum of 2 

comparisons required at each step. Including the modular 

exponentiation, the algorithm has a running time of  

 
Or, in the worst case, O(𝑙𝑜𝑔2N). 

The integer division works like this, if x' = 
𝑥−1

2
 is even, x''= 

x

2
=  

𝑥−1

22 . If x' is odd, x''= 
𝑥−1

2
= 

𝑥−3

22 . Hence 'a' gets added with 1 

multiplied by the denominator. 

 

4.2 Groups 

 

This algorithm works in groups modulo primes of the form 

2
n
+1. However, it also works in groups modulo primes of the 

form 2
n
1+2

n
2+2

n
3, and so on, +1, provided x <= the lowest 

power of 2 in the summation (excluding 1). It may be possible 

to create an algorithm that reduces x to a neighbourhood 

within that lowest power of 2 in polynomial time. 

The interesting thing is, if the group size is of the form 

2
n

1+2
n
2+2

n
3+...+2

n
k+1, where nkis the lowest power of the 

exponent, and x >2
n

k ,the algorithm may still be used to reveal 

𝑛𝑘  bits of the exponent x, thereby reducing the complexity of 

solving DLP for that specific group by 2
n
k. 

 

4.3 Comments 

 

The algorithm works without actually performing any kind of 

square root operation. As opposed to Long and Wigderson's 

work, where they consulted an oracle for the correct square 

root (incorrectly referred to as the principal square root - the 

principal square root returns the root of the quadratic residue 

that is also a quadratic residue), this algorithm works by 

simply “constructing" the appropriate exponent that 

corresponds to the roots of x or x-1. 

 

V. CONCLUSION 

 

We proposed an algorithm to efficiently compute the discrete 

logarithm in groups modulo a Fermat Prime, and certain other 

prime forms, subject to certain limitations. This same 

algorithm may be used in those other groups to reveal a 

number of bits of the exponent. We also proposed a general 

case algorithm, but this is not usable efficiently as there are 2 

square roots modulo a prime, and so far, it is not possible to 

know which is the positive square root, given that x of g
x
is 

unknown. This construction algorithm (which does not 

require one to find any square roots) may also be used to 

check the coprimality of the exponent x (and neighboring 

values of x, and functions of x) against the factors of N-1.It 

is therefore our belief that this algorithm can be useful in 

solutions to DLP in various other groups as well. 
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