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Abstract:- Let  jwgjP i

p

n cos)()(   be a random 

trigonometric polynomial such that the coefficients {g1(w), 

g2(w)…gn(w)} is a sequence of normally distributed independent 

random variables with mean zero and variance one and the 

correlation coefficients fij between ith and jth coefficients are 

constant. 0<f<1. We have to find the average number of real 

zeros )2,0( nE  of the equation KT n )(  (where K is any 

constant). 

I.  INTRODUCTION 

Let 
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 Be a random trigonometric polynomial, where the 

coefficients {g1 (w). g2 (w)…gn(w)} (0, w-1) is a sequence of 

independent and normally distributed random variables with 

mathematical expectation zero and variance one. 

 Let ),( ENn  be the number of level crossings 

of the family of the curves 0)(  TnY  with the line 

y=k for α≤θ≤β. Previously Dunnage [3] found that in the case 

of normally distributed random variables with mean zero and 

variance one and p=0 the polynomial (1.) has 
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zeros on the average in the 

interval (0,2π) except for a certain exceptional set whose 

measure does not exceed (log n)
-1

.  Nayak N.N. and Patanayak  

(6) considered the same polynomial and found that the 

average number of crossings of these curves with the line y=k 

is asymptotic to   n
n
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II. THEOREM 

 Let  jwgjP i

p

n cos)()(   be a random 

trigonometric polynomial such that the coefficients {g1(w), 

g2(w)…gn(w)} is a sequence of normally distributed 

independent random variables with mean zero and variance 

one and the correlation coefficients fij between ith and jth 

coefficients are constant. 0<f<1. Then for sufficiently large n 

and p >0, the average number of real zeros of the equation 

KT n )(  (where K is any constant) satisfies 
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 Das, M.K (1) and Sambadham, M. and Renganathan  

(8) separately used Kac Rice formula to find the mathematical 

expectation of the number of real roots of (1) for P=0 and K=0 

and for some non zero finite or infinite value of mean. In this 

wider class of distribution he found the same expected number 

of real roots for said polynomial when ever the correlation 

coefficients between any two coefficients gj and gr denoted by 

fjr is constant 0<f<1 as have been found in previously 

mentioned works.    

 Samal  and  Pratihari (7)  considered same 

polynomial when mean zero and variance one and fij the 

correlation coefficients between j th and ith coefficients are 

constant and for any constant K the expected number of real 

roots of the equation T(θ)=K satisfies 
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 Here we consider a polynomial of the form Let 
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 Where the random variables are normally distributed 

with mean zero and unity variance. We denote EN (a,b). The 

average number of level crossings of the family of curves 

y=Tn(θ) with the line y=k. 
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III. KAC RICE FORMULA FOR TRIGONEMETRIC 

POLYNOMIAL 

 From Kac Rice formula we obtain 
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where (x1,x2) is the density of the joint distribution function 

Tn(θ) and T’n(θ)   Let   
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 Using the procedure to find out the number of level 

crossings used by Cramer and Lead better  for the equation 

Tn(θ)=K we obtain 
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 Since the coefficients of Tn (θ) are independent and 

normally distributed random variables with mean zero and 

variance one 

 We can easily derive that  
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 and using (2) we have the 

extended Kac Rice formula. 

 

b)(a, Ib)(a,I                     

                  

22
exp

2

2
exp),(

21

2

2

32










 













  










d

kv
erf

k
kvd

kv
baE

a

b

a

b

n

 

Where 

 































n

j

p

n

j

p

n

j

p

n

j

p

SinjjE

CosjjC

jSinjB

jCosjA

v

1

1

1

2

1

2222

1

222

2











 

 

Proof of the Theorem 

 We divide the zeros of Tn (θ) into two groups and 

proceed to estimate expected number of zero in each group. 

 The zeros are 

(i).  those lying in the intervals (0,ε), (π-ε, π+ε) and (2π-ε, 2π) 

(ii). Those lying in the intervals (ε, π-ε) and (π+ε, 2π- ε) 

It so happens that zeros in group (i) intervals contribute 

insignificantly towards ENn(0,2π) unlike those in group (ii) 

intervals we establish this in the next two sections together 

with the proof theorem. We choose ε=n-1/4 

 

IV. NUMBER OF ZEROS IN GROUP (i) INTERVALS 

 

 We know that out side a small exceptional set of 

values of ω, Tn (θ) has a negligible number of zeros in the 

intervals (0, ε), (π-ε, π+ε)  and (2π-ε, 2π). By periodically the 

number of zeros in (0, ε) and (2π-ε, 2π) is same as the number 

of zeros in (0, ε) we prove out assertion for the interval (-ε, ε) 

first. The estimation of roots in the interval (π-ε, π+ε) follows 

the same lines of argument. 

 Let   
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 The distribution function of the random variable 
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From which any positive we can see that T(0,w)-K>e
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For sufficient large n 

 Therefore from (3) and (4) except for sample in an w 

set of measure not exceeding   2v/22
2

1

n-v- exp
2










  












)(max2)(max2)e T(2

)2exp()e T(2

1

2

1

2i

2i

wgDwgjew

KvnenK

j
njn

n

j

p

nj

ne 







                                                                                  (5) 

From the distribution function gj we have 
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 Let N(e) be the number of zero of T (z,w)-K =0 in Z 

≤e using Jensen theorem 
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 From the above derivations it is easy to conclude that 

the number of zeros of T(z,w)-K in the region Z is 0 (n
3/4

) 

except for a set of measure not exceeding e
-ne

.  

 Excepted number of level crossing in Group (ii) 

intervals. We make the interval (ε,π- ε) and get the following 

estimates. 

 First we recall some of the estimates used in Das [8]. 

Let Sk=cos2θ+cos4 θ+……cos2k θ 

 For ε≤θ≤π we have 
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 By using the expected number of level crossings 

given by Cramer and lead better for the equation T(θ)-K we 

can obtain  
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 We recall some of the estimate used in Das (1) and 

also Abels theorem we have  
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by taking n
3/4

 and we consider the correlation coefficient 

fjr=f=constant  
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Then after some simplification 

 



























 nn

k

N

k
p

1
0exp

2 12

2
1




 

 










2/1

2/3
0

nvk


 

and exp 



























 212p

22 1
0

n

k-
 exp

2 n

k


 

From the above estimates we have  
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for large n  
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A similar estimate can be derived for ENn ),(    

 We have  
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which complements the proof of the theorem  
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