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Abstract: In this paper simulating annealing technique is used to 

minimize the number of solutions from orthogonal projections. 

Convexity is prior information about the object geometry in the 

discrete tomography. This information may be useful for 

reconstruction of binary matrix or binary image from their 

projections. Boundary point switching is used to find 

approximate solution. This technique gives better result as 

compare to general switching. 
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I. INTRODUCTION 

mage reconstruction from projection or computerized 

tomography is the technique to find out the density 

distribution within a physical object from a multiple 

projections. In computerized tomography we attempt to 

reconstruct a density function f(x) in R
2
 or R

3
 from knowledge 

of its line integral   or weighted line sum [1]. This line 

integral or weighted line sum is the projection of f(x) along 

line L. The object from the mathematically point of view, 

corresponds to a density function for which integral or 

summation in the form of projection data is known. So we can 

categorize tomography into continuous tomography and 

discrete tomography. In case of continuous tomography we 

consider that both the domain and the range of function are 

continuous. But in discrete tomography the domain of the 

function could be either continuous or discrete and the range 

of the function is finite set of real number. Discrete 

tomography theory is described by Kuba and Herman [13]. 

Discrete tomography is used when only few projections for 

reconstruction are available. But since projection data may be 

less than the number of unknown variable the problem 

becomes ill posed. According to Hadmard [2] mathematically 

problem are termed well posed if they fulfill the following 

criteria (i) A solution exists (ii) the solution is unique (iii) the 

solution depend continuously on the data continuously 

On the opposite problems that do not meet these criteria are 

called ill posed. Image reconstruction from few projections is 

also ill posed problem because it generates a large number of 

solutions. To minimize number of solution we require some a-

priori information about the object geometry. This a-priori 

information about the object is also called additional 

constraints on the space of solution. Examples of these are 

connectivity, convexity [5]-[9] and periodicity [3][14] 

Ryser [10] and Gale[11] independently derived necessary and 

sufficient conditions for the existence of binary matrices from 

horizontal and vertical projections. Ryser also provided a 

polynomial time algorithm for finding such a binary matrices.  

I 
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In this paper the convexity constraint is used to minimize the 

solution space. The class of hv convex binary images has been 

considered, as the solution space for a given set of projections, 

the projection set with two orthogonal directions namely, 

horizontal(1, 0) and vertical direction (0,1)  only has been 

taken. Thus we have the projection set  𝒫(𝑅, 𝐶) ,  𝑅 =

 𝑟1 , 𝑟2 , … . . 𝑟𝑚  , and  𝐶 =  𝑐1, 𝑐2 , … . . 𝑐𝑛  . The hv convexity 

with projections from two directions does not provide unique 

solution [14].  

 

 

          

          

          

          

          

          

          

          

          

          
 

          

          

          

          

          

          

          

          

          

          
 

 

Figure 1: Two different hv- convex images with same projection set 

 

In practical applications the class of h-v convex matrices with 

given projections in two directions 𝑣1 =  1, 0  and 

𝑣2 =  0, 1  is very large, making it near impossible to find 

the exact solution [15]. Moreover many times the exact 

solution is not required (for example, it may add 

instrumentation error in projections to the solution), thus 

optimal solution is the sought after solution in such problems. 

Since the class is large and the optimization criteria is 

depending on only projection data and a-priori information 

usual optimization methods may not work well, hence 

stochastic optimization technique (minimization algorithm) 

known as simulated annealing  derived from 

thermodynamics [16] is used here. 

Simulated annealing is a global optimization algorithm in the 

class of stochastic optimization algorithms and Meta Heuristic 

algorithms. Simulated annealing is an adaption of Metropolis 

Hastings, Monte-Carlo algorithm [17] and is used in function 

optimization. This approach gives a basis for large variety of 

extensions and specification of general method. 

Simulated annealing is inspired by the process of annealing in 

metallurgy. In this natural process a material is heated and 

slowly cooled in controlled conditions, so that the size of 

crystals in material be increased and their defects be reduced, 

thus improving the strength and durability of material. In this 

process heat increases the energy of atoms and allows them to 

move freely from local minimum energy, controlled and slow 

cooling schedule gives a low energy configuration (lower than 

initial / previous one) to be found and exploited to make larger 

crystals with reduced defects. 

Since in the materials all atoms are similar, and their behavior 

is random, thus they form a large search space for finding 

minimum, the simulated annealing approach gives a generic 
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stochastic method to find a good approximate global optimum 

of a function in large search space. This method is more 

applicable when search space is discrete [16][18]. 

The analogy of this physical process of annealing in discrete 

tomography reconstruction problem is as follows: 

The cells (𝑖, 𝑗) ∈ 𝑋  are the state variables (atoms) in the 

system, which is to be reached at thermodynamic equilibrium 

at a given temperature, this is represented as each image has a 

given projection set and/or some a-prior information is also to 

be satisfied. By slow cooling, the system can be frozen at 

minimal energy, which is minimization of some cost (fitness) 

function. In other words simulated annealing based approach 

can be defined as: 

For a given projection set  𝒫 and constraints, define the 

class  of possible solutions, this class is the search space. 

Each element F of search space  is a binary image 

containing (mn) values (pixels / cells fij ) which are atoms, the 

heating process says that the values of fij  can be interchanged 

such that 𝐹′ ∈ ℱ  (movement of atoms), cooling will say to 

find such 𝐹′ which lowers the energy (cost/ fitness function) 

by freezing we understand to reach an optimal or near optimal 

solution. 

In this simulated annealing process the movements of atoms is 

taken as switching operation, the switching operation as free 

movement has been considered in [19][20]. In present work 

the switching is carried on only at boundary of image, since 

the number of pixels (cells) on boundary is less than the 

number of pixels (cells) in entire image, this will speed up the 

complete process.. 

II. PRELIMINARY 

In this section some definition are given which explain the 

movement of atoms in simulated annealing process. 

  2.1  Adjacent cells and adjacent points  

Any two cells (𝑖, 𝑗) and (𝑖 ′, 𝑗′) in X are said to be adjacent if 

either  𝑖 = 𝑖 ′  and  𝑗 − 𝑗′ = 1 or   𝑖 − 𝑖 ′ = 1 and 𝑗 = 𝑗′.  

2.2 Adjacent points of binary image or connected image 

 Any two cells could be joined through adjacent cells that are 

connected. If all the points of binary image F are connected 

then it is called connected image. 

 

          

          

          

          

          

          

          

          

          

          
 

          

          

          

          

          

          

          

          

          

          
 

 

Connected binary Image    

 

Not connected Binary Image  

 

Figure 2: Connected binary image and not connected binary image 
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2.3 Boundary of a binary image  

The binary image 𝐹 says that it contains 1’s at some cell (i, j) 

and 0’s at other cells in discrete set  𝑋, here after by an image 

we will refer the cells having value of 𝐹  as 1 i.e  

𝐹 𝑋 𝑖, 𝑗  = 𝑓𝑖𝑗 = 1 and the cell or point (I,j) of X will be 

said to be a point of binary image 𝐹, i.e. 𝑓𝑖𝑗 = 1 ⟹ (𝑖, 𝑗) ∈ 𝐹. 

The set of all cells (points) (i, j) in 𝐹 which separate 1’s from 

0’s will be called the boundary of 𝐹, thus the boundary of 𝐹 

is represented as 

𝐵𝐹 = {(𝑖, 𝑗) ∈ 𝐹: ∃ 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡 (𝑖 ′, 𝑗′) ∉ 𝐹} 

2.4 Boundary point 

The element (𝑖, 𝑗) ∈ 𝐵𝐹  will be called the boundary point. 

Thus boundary point can be defined alternatively: A point 

(cell) (𝑖, 𝑗) ∈ 𝐹 will be called boundary point if at least one 

of following four properties is satisfied  

(i) 𝑓𝑖−1,𝑗 = 0 𝑜𝑟 𝑖 = 1  

(ii) 𝑓𝑖 ,𝑗−1 = 0 𝑜𝑟 𝑗 = 1 

(iii) 𝑓𝑖+1,𝑗 = 0 𝑜𝑟 𝑖 = 𝑚 

(iv) 𝑓𝑖 ,𝑗 +1 = 0 𝑜𝑟 𝑗 = 𝑛 

Based on this alternative definition boundary points can be 

categorized in following categories: 

If a boundary point satisfies only one property it will be called 

type 1 boundary point, if any boundary point satisfies any two 

properties only it will be called type 2 boundary points, if any 

boundary point satisfies any 3 properties only then it will be 

called type 3 boundary point. A boundary point satisfying all 

four properties will be an isolated point of image 𝐹 and will 

be called type 4 boundary point. 

2.5 Inner point 

A cell (point) (𝑖, 𝑗) ∈ 𝐹 will be the inner point of binary 

image if it is not the boundary point. Thus inner point is a 

point  𝑖, 𝑗 ∈ 𝐹    𝑎𝑛𝑑 (𝑖, 𝑗) ∉ 𝐵𝐹 . 
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Figure 3:  Boundary points and inner points 

 

2.6 Envelop and envelop points of binary image 𝐹 

The set of all cells (points) in 𝑋 but not in 𝐹, which separate 

1’s of 𝐹 from 0’s is called the envelop of 𝐹. 

𝐸𝐹 = {(𝑖 ′, 𝑗′) ∉ 𝐹: ∃ 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡 (𝑖, 𝑗) ∈ 𝐹} 

And element (𝑖′, 𝑗′) ∈ 𝐸𝐹  will be called the envelop point. 

Thus envelop point can be defined alternatively as a point 

(cell) (𝑖′, 𝑗′) ∉ 𝐹  i.e. 𝑓𝑖 ,𝑗 = 0  will be called envelop point 

if at least one of following four properties is satisfied  

(i) 𝑓𝑖−1,𝑗 = 1   

(ii) 𝑓𝑖 ,𝑗−1 = 1  

(iii) 𝑓𝑖+1,𝑗 = 1  

(iv) 𝑓𝑖 ,𝑗 +1 = 1  

Based on this alternative definition envelop points can be 

categorized as: 

If a envelop point satisfies only one property it will be called 

type 1 envelop point, if any envelop point satisfies any two 

properties only it will be called type 2 envelop point, if any 

envelop point satisfies any 3 properties only then it  will be 

called type 3 envelop point. A envelop point satisfying all four 

properties will be an hole of image F and will be called type 4 

envelop point. 
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Figure 4: Boundary points, envelope points and inner points 

 

2.7 Boundary point switching  

The given projection set has projection in two directions 

namely horizontal and vertical, so the switching component 

will contain only four points (cells) in X. If the elements of 

switching component are adjacent, then it will be called 

boundary point switching component.  

Let the two disjoint subsets 𝐼 1
  and  𝐼 2

 of switching 

component 𝐼 1
 ∪  𝐼 2

 are 𝐼 1
= { 𝑖1 , 𝑗1   (𝑖2 , 𝑗2)}    and 

𝐼 2
= { 𝑖1, 𝑗2   (𝑖2, 𝑗1)}    

if 𝐼 1
⊂ 𝐵𝐹 ( 𝐼 1

⊂ 𝐸𝐹)    and   𝐼 2
⊂ 𝐸𝐹  ( 𝐼 2

⊂ 𝐵𝐹  

respectively) then this switching operation with this kind of 

switching component is called boundary point switching. The 

figures explain the definitions. 
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Image before  

boundary point switching 

 

Image after   

boundary point switching 

  

Figure 5:  Boundary point switching component and switching result 

 

2.8 Measure of convexity 

Let nh (respectively nv) denote all horizontally (respectively 

vertically) adjacent cells in 𝐹, nh (respectively nv) can be used  

as a measure of horizontal (respectively vertical) convexity. 

Let nh denote all horizontally adjacent cells in 𝐹, also nh can 

be used  as a measure of horizontal convexity, similarly, nv 

may be considered for vertical convexity denoting all vertical 

adjacent cells in  𝐹. 

Thus for the binary image 𝐹 = (𝑓𝑖𝑗 )𝑚×𝑛     having projection 

set  𝒫(𝑅, 𝐶) with 𝑅 =  𝑟1 , 𝑟2 , … . . 𝑟𝑚  , 𝐶 =  𝑐1, 𝑐2 , … . . 𝑐𝑛   

𝑖1 , 𝑗1 𝑖1 , 𝑗2 

𝑖2 , 𝑗1 𝑖2 , 𝑗2 
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𝑛ℎ =   𝑓𝑖𝑗𝑓𝑖𝑗 +1

𝑛−1

𝑗 =1

𝑚

𝑖=1

 

and  

𝑛𝑣 =   𝑓𝑖𝑗𝑓𝑖+1𝑗

𝑚−1

𝑖=1

𝑛

𝑗 =1

 

 

Let us define a measure for hv-convexity as  

𝑛ℎ𝑣 = 𝑛ℎ + 𝑛𝑣= number of horizontally and vertically 

adjacent cells in  𝐹, so         

𝑛ℎ𝑣 =   𝑓𝑖𝑗𝑓𝑖𝑗 +1

𝑛−1

𝑗 =1

𝑚

𝑖=1

+   𝑓𝑖𝑗𝑓𝑖+1𝑗                                    (1)

𝑚−1

𝑖=1

𝑛

𝑗 =1

 

 

it may be noted that 

𝑛ℎ ≤  𝑟𝑖 − 𝑚

𝑚

𝑖=1

   

where 𝑟𝑖   is the i
th  

horizontal projection set 𝒫(R,C). Since 

number of adjacent cells in i
th

 row of 𝐹 will always be less 

than or equal to the number of 1’s in   i
th

 row of 𝐹. If the 

image is h-convex then 

𝑛ℎ =  𝑟𝑖 − 𝑚

𝑚

𝑖=1

   

 Similarly  

𝑛𝑣 ≤  𝑐𝑗 − 𝑛

𝑛

𝑗 =1

   

 and if image is v-convex, then 

𝑛𝑣 =  𝑐𝑗 − 𝑛

𝑛

𝑗 =1

   

Thus 

𝑛ℎ𝑣 = 𝑛ℎ + 𝑛𝑣 ≤  𝑟𝑖 − 𝑚

𝑚

𝑖=1

+  𝑐𝑗 − 𝑛

𝑛

𝑗 =1

 

Since the projection set 𝒫(𝑅, 𝐶)  has to be compatible for 

reconstruction problem. Thus 

   𝑟𝑖
𝑚
𝑖=1 =  𝑐𝑗 = 𝑁𝑛

𝑗=1 = total number of 

cells in 𝐹. 

Hence  

𝑛ℎ𝑣 ≤ 2  𝑟𝑖 − 𝑚 − 𝑛

𝑚

𝑖=1

=  𝑐𝑗 − 𝑚 − 𝑛

𝑛

𝑗=1

 

And if the image is hv convex then 

 

𝑛ℎ𝑣 = 2  𝑟𝑖 − 𝑚 − 𝑛

𝑚

𝑖=1

= 2  𝑐𝑗 − 𝑚 − 𝑛

𝑛

𝑗 =1

= 2𝑁 −  𝑚 + 𝑛                      (2) 

Thus for reconstruction of hv convex images, the fitness (cost) 

function should be to achieve convexity, thus here the 

optimality criterion has been considered to maximize  

𝑛ℎ𝑣 = 2  𝑟𝑖 − (𝑚 + 𝑛)

𝑚

𝑖=1

 

 

III. RECONSTRUCTION ALGORITHM BASED ON 

SIMULATED ANNEALING 

Our reconstruction problem (𝐹ℎ𝑣 , 𝒫)  with 𝒫 = 𝑃(𝑅, 𝐶) 

has been transformed to optimization problem 

max ( 𝑛ℎ𝑣) 

 Subject to  

  𝑓𝑖𝑗

𝑚

𝑖=1

= 𝑐𝑗     ∀ 𝑗 = 1 1 𝑛 

 𝑓𝑖𝑗

𝑛

𝑗 =1

= 𝑟𝑖    ∀ 𝑗 = 1 1 𝑚 

 𝑟𝑖

𝑚

𝑖=1

=  𝑐𝑗

𝑛

𝑗 =1

 

 

 The proposed reconstruction algorithm based on Simulated 

Annealing approach: 

3.1 Initial solution  

The initial solution of reconstruction (𝐹ℎ𝑣 , 𝒫) is obtained 

using any basic reconstruction algorithm, which does not 

provide the hv convex image. 

3.2 Annealing process 

The boundary point switching operation has been considered 

the free movement of the atoms, so the atoms are boundary 
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point switching components. At highest temperature, which is 

starting point, all boundary points switching components have 

equal probability to be chosen, as the temperature goes down, 

the cooling is controlled with changing the assignment of 

probability of boundary point switching components to be 

chosen for switching operation. The assignments of 

probabilities to these switching components have been done 

according to category of boundary points and envelop points 

taken together in the switching component. In our algorithm it 

has been assigned higher value to a boundary point switching 

component, if the possibility of improvement in measure of 

convexity is higher. 

Thus, in a typical iteration the boundary point switching 

operation is performed on all those switching components 

which have been assigned highest probability, and at that 

temperature (iteration) solution is obtained. In next iteration, 

again the boundary points, envelop point and boundary point 

switching components in new obtained solution will be 

identified and another assignment of probability is done 

according the category of boundary points and envelop points. 

The new solution is obtained in similar manner as in previous 

iteration. Thus this solution is at next lower temperature (or at 

next iteration). 

3.3 Termination 

The freezing point or final solution is achieved, when we stop 

the iterations. The stopping criteria has been taken as, when 

either change in assignment of probabilities to the switching 

components is not significant (not possible) or the change in 

assignment of probabilities does provide possibility to change 

in the measurement of convexity (or in the value of 

cost/fitness function), whichever is achieved earlier.  

IV. IMPLEMENTATION OF RECONSTRUCTION 

ALGORITHM 

The proposed reconstruction algorithm is implemented as 

Algorithm 

Step 1: Get initial solution 𝐹0 
using algorithm 2.7.2 and set 

tm := Maxt and niter:=1 

Step 2: Find BF 
 
the set of boundary points and EF set of 

envelope points of F . 

Step 3: If niter > tm then exit 

Step 4: For each element of BF find all boundary point 

switching component and according to their 

category assign the probability as highest 

probability to switching component have isolated 

point or type 4 boundary points. And in order of 

the type of boundary point assign the probability to 

all switching components. 

Step 5: Perform the switching operation on switching 

components with maximum probability in 𝐹 

Step 6:  set niter = niter + 1. If the value of cost function Nhv 

is improved then Go to step 2 and set tm = niter + 

maxt. Else Go to step 4 and choose another 

component in BF with next highest probability to 

perform switching operation and increase. 

Step 7: Repeat steps 2 to 6 until improvement in 𝑛ℎ𝑣  is 

significant. 

V. EXPERIMENTAL RESULTS 

For experimental study the test set of convex binary images of 

sizes 10x10, 20x20, 30x30, 40x40, 50x50, 60x60, 70x70, 

80x80, 90x90 and 100x100 are generated, for each size a set 

of 100 images has been generated. For each image the 

horizontal and vertical projections are calculated as row sum 

and column sum of corresponding binary matrices. Thus a 

image of size nxn will have projection set 𝒫 (R, C) 

with 𝑅 =  𝑟1 , 𝑟2, … , 𝑟𝑚  , 𝐶 =  𝑐1 , 𝑐2, … , 𝑐𝑛  . A typical example 

of a binary image of size 20x 20 and its projection set 𝒫(R, C) 

are given in figure 3.6. 
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𝑅 =   2 , 3 , 4 , 5,   5,   5,   7,   8, 10, 12, 12, 12, 13, 18,

  12,  11,  10,   4,   4,   2,  

𝐶 =

 3 , 6,    8, 14, 15, 18, 20, 20,

  13,   9,   8,   8,   6,   4,   2,   1,   1,    1,    

1,     1. Figure 6: Image 20x20 and its Projection Set 

On these image set we implemented the proposed 

reconstruction algorithm, we also implemented the algorithm 

given in [20] on these images. The performance of these 

algorithms is compared with measure of convexity defined in 

section 2.8 and the reconstruction error defined as normalized 

L1 error given in following 

𝐸𝑅 =  𝐹 − 𝐹  =
100

𝑚𝑛
   𝑓𝑖𝑗 −  𝑓𝑖𝑗  

𝒎

𝒊=𝟏

𝑛

𝑗 =1

                                    (3) 

 Where 𝐹 and 𝐹  are the original image and reconstructed 

images respectively. 

 

Table 1: Comparison of (𝑛ℎ𝑣  ) measure of convexity of proposed algorithm  with existing algorithm for the typical images 

Size of images Bound (𝑛ℎ𝑣 ) measure of convexity 

Initial 

guess 

Final reconstruction 

Existing algorithm  Proposed algorithm  

10x10 156 155 156 156 

20x20 278 265 270 270 

30x30 626 611 616 616 

40x40 1603 1561 1572 1588 

50x50 2678 2646 2655 2657 

60x60 3130 3081 3097 3101 

70x70 8470 8406 8427 8447 

80x80 11058 10989 11014 11034 

90x90 15009 13885 13928 13961 

100x100 15130 14804 14806 14981 

 

 

Table 2: Comparison of reconstruction error of proposed 

algorithm with existing algorithm  for the typical images 

Size of 

images 

(𝐸𝑅)Reconstruction error 

Initial 

guess 

Final reconstruction 

Existing algorithm  Proposed algorithm  

10x10 4.00 0 0 

20x20 8.00 6.50 4.50 

30x30 3.78 4.40 3.30 

40x40 5.25 5.63 6.62 

50x50 3.76 4.24 4.00 

60x60 3.94 3.78 3.28 

70x70 2.04 2.24 2.04 

80x80 2.06 2.00 2.06 

90x90 2.37 2.32 1.88 

100x100 9.04 8.80 8.06 

 

Table 3: Comparison of reconstruction result   of 

proposed algorithm with existing algorithm  for the 

average results 
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Size of  

images 

Existing 

algorithm  

Proposed 

algorithm  

𝑛ℎ𝑣 𝐸𝑅 𝑛ℎ𝑣 𝐸𝑅 

10x10 138.20 0.00 138.20 0.00 

20x20 617.10 0.95 617.60 0.65 

 30x30 1422.10 2.60 1425.00 2.04 

40x40 2567.30 3.09 2574.20 2.41 

50x50 4038.20 3.36 4051.40 3.05 

60x60 5831.90 3.62 5854.30 3.61 

70x70 7928.90 3.36 7954.30 2.98 

80x80 10406.30 3.31 10442.80 3.05 

90x90 13148.40 3.72 13206.70 3.46 

100x100 16313.90 3.70 16378.40 3.34 

 

Table 4: Comparison of 𝑛ℎ𝑣  and  𝐸𝑅  of proposed 

algorithm with existing algorithm  for the average 

results with 1% noise 

 

Size of  

images 

Existing 

algorithm  

Proposed 

algorithm  

𝑛ℎ𝑣 𝐸𝑅 𝑛ℎ𝑣 𝐸𝑅 

10x10 138.20 0.00 138.20 0.00 

20x20 617.10 0.95 617.60 0.65 

 30x30 1421.90 2.71 1425.00 2.04 

40x40 2567.10 3.09 2574.20 2.41 

50x50 4034.80 3.36 4043.50 3.07 

60x60 5803.00 4.20 5768.10 4.23 

70x70 8687.79 3.86 7842.60 4.02 

80x80 10381.30 3.71 10348.40 3.67 

90x90 13135.30 3.99 13124.00 3.85 

100x100 16318.00 3.78 16294.20 3.76 

 

Table 5: Comparison of 𝑛ℎ𝑣  and  𝐸𝑅  of proposed 

algorithm with existing algorithm  for the average 

results with 2% noise 

 

Size of  

images 

Existing 

algorithm  

Proposed 

algorithm  

𝑛ℎ𝑣 𝐸𝑅 𝑛ℎ𝑣 𝐸𝑅 

10x10 138.20 0.00 138.20 0.00 

20x20 617.10 0.80 617.60 0.65 

 30x30 1414.10 3.41 1409.80 3.61 

40x40 2557.50 3.58 2553.90 3.46 

50x50 4029.40 3.67 4012.00 3.77 

60x60 5824.80 4.14 5814.40 4.10 

70x70 7910.10 3.79 7908.80 3.83 

80x80 10382.50 3.75 10360.20 3.72 

90x90 13134.50 4.05 13045.50 4.28 

100x100 16297.70 3.90 16234.50 4.00 

 

Table 6: Comparison of 𝑛ℎ𝑣  and  𝐸𝑅  of proposed 

algorithm with existing algorithm  for the average 

results with 3% noise 

 

Size of  

images 

Existing 

algorithm  

Proposed 

algorithm  

𝑛ℎ𝑣 𝐸𝑅 𝑛ℎ𝑣 𝐸𝑅 

10x10 138.20 0.00 138.20 0  

20x20 609.40 2.68 605.40 2.55 

 30x30 1408.70 4.17 1407.20 4.10 

40x40 2554.70 3.73 2541.40 3.76 

50x50 4027.40 3.80 4018.50 3.59 

60x60 5799.30 4.55 5792.30 4.56 

70x70 7900.60 4.04 7886.10 4.39 

80x80 10333.90 4.18 10305.30 4.18 

90x90 13093.90 4.27 13046.90 4.43 

100x100 16251.70 4.21 16146.70 4.39 

 

Table 7: Comparison of 𝑛ℎ𝑣  and  𝐸𝑅  of proposed 

algorithm with existing algorithm  for the average 

results with 4% noise 
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Size of  

images 

Existing 

algorithm  

Proposed 

algorithm  

𝑛ℎ𝑣 𝐸𝑅 𝑛ℎ𝑣 𝐸𝑅 

10x10 138.20 0.00 138.20 0.00 

20x20 604.30 3.98 596.50 4.38 

 30x30 1401.60 4.86 1392.40 4.96 

40x40 2542.90 3.96 2525.70 4.38 

50x50 4004.50 4.50 3991.60 4.18 

60x60 5783.90 4.93 5766.70 4.68 

70x70 7855.10 4.61 7762.30 4.93 

80x80 10316.30 4.50 10267.50 4.68 

90x90 13015.60 4.78 12955.90 4.92 

100x100 16165.00 4.70 16107.00 4.77 

 

Table 8: Comparison of 𝑛ℎ𝑣  and  𝐸𝑅  of proposed 

algorithm with existing algorithm  for the average 

results with 5% noise 

Size of  

images 

Existing 

algorithm  

Proposed 

algorithm  

𝑛ℎ𝑣 𝐸𝑅 𝑛ℎ𝑣 𝐸𝑅 

10x10 138.20 0.00 138.20 0.00 

20x20 607.60 3.78 594.50 5.18 

 30x30 1402.60 4.96 1392.80 5.18 

40x40 2528.20 5.28 2506.80 5.28 

50x50 3994.10 5.00 3979.90 4.82 

60x60 5757.00 5.26 5699.20 5.36 

70x70 7826.50 4.80 7798.00 4.97 

80x80 10281.20 4.85 10115.30 5.25 

90x90 13011.10 4.99 12942.20 5.25 

100x100 16137.70 4.98 16055.30 5.06 

 

 

 

Figure 7: 𝑛ℎ𝑣 with noisy projections for 40x40 image 
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Figure 8 𝑛ℎ𝑣 with noisy projections for 100x100 images 

 

Figure 9: Reconstruction error with noisy projections for 40x40 images 
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Figure 10: Reconstruction error with noisy projections for 100x100 images 

 

V. CONCLUSION 

Finally, it is evident that proposed algorithm converges faster 

than existing algorithm [20], it also gives good visual 

reconstruction as evident from figures. In case of noisy 

projections up to 2% of noise, our algorithm gives better 

reconstructions than existing algorithm [20] but with higher 

noise the reconstructions are not that good, the reason for this 

may be that we are using only boundary of images which get 

more distorted with higher level of noise. 
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