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Abstract- The present paper is focused on the study for the effects 

of constant heat generation and thermal buoyancy on the steady 

two-dimensional flow and heat transfer of a non-Newtonian 

power-law fluid over a non-linearly stretching vertical surface. 

Highly nonlinear momentum and thermal boundary layer 

equations which governing the flow and heat transfer are 

reduced to a set of nonlinear ordinary differential equations by 

appropriate transformation.The resulting ODEs are successfully 

solved numerically with the help of fourth order Runge–Kutta 

method coupled with the shooting technique. The effects of 

various parameters like the buoyancy(mixed convection) 

parameter, the radiation parameter, power-law index parameter 

and the local Prandtl number on the flow and temperature 

profiles as well as on the local skin-friction coefficient and the 

local Nusselt number are presented and discussed. Favorable 

comparisons of numerical results with previously published work 

on various special cases of the problem are obtained. 
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I. INTRODUCTION 

he study of flow and heat transfer of a non Newtonian 

fluid over stretching surface has received considerable 

attention due to their wide application in various engineering 

fields. The problem of flow and heat transfer over a 

stretching/shrinking sheet is relatively a new consideration in 

the laminar boundary layer flow. The important concept of 

boundary layer was applied to power law fluids by Schowalter 

[1].numerical solution for forced convection of power law 

fluid about a right angle wedge with isothermal surface has 

been investigated by Lee and Ames [2].The surface velocity 

on the boundary, the study of the boundary layer 

magnetohydrodynamic (MHD) flow towards a 

shrinking/stretching sheet has gained considerable attention of 

many researchers because of its frequent occurrence in 

Industrial technology, geothermal application and high 

temperature plasmas applicable to nuclear fusion energy 

conversion and MHD power generation systems. Recently 

several attempts [3-10] have been made on the study of 

shrinking phenomena Muhamin and Khamis [11] studied the 

effects of heat and mass transfer on the non-linear MHD 

viscous fluid flow over a shrinking sheet in the presence of 

suction. They explored the industrial sheet had a substantial 

effect on the flow fields. Mostafa A.A. Mahmaud [12] studied 

the non-uniform heat generation effect on heat transfer of a 

non-Newtonian power-law fluid over a non-linear stretching 

sheet. However, all the studies mentioned above are restricted 

in linear shrinking/stretching sheet with constant 

viscosities.The flow over a non-linear stretching sheet has 

widely studied [13-15]. In many practical situations the 

continuous stretching/shrinking surface is assumed to have a 

power-law velocity. It is well known that the physical 

properties of fluid flow may change with temperature 

especially for the variable fluid viscosity and the thermal 

conductivity. Prasad et al. [16] investigated the effects of 

variable viscosity and variable thermal conductivity on the 

hyderomagnetic flow and heat transfer over a non-linear 

stretching sheet. Nadeem and Hussain [7]examined the MHD 

flow of a viscous fluid on a non-linear porous shrinking sheet 

with the hemotopy analysis. They made an observation in the 

existence of the shrinking sheet solution and found that the 

solution might exist if either the magnetic field or the 

stagnation point flow is taken into account. However, the 

effect of thermal radiation and viscous dissipation were not 

considered in their studies. All of the above studies were done 

for the case that the effect of non-uniform heat 

generation/absorption on heat transfer is not taken into 

consideration. The study of heat generation or absorption 

effects on heat transfer is important in many physical 

problems dealing with chemical reactions and those concerned 

with dissociating fluids. The effect of non-uniform heat 

generation/absorption on heat transfer on Newtonian and non-

Newtonian fluids over stretching/shrinking surface has been 

studied by many authors [17-21] under various physical 

situations. Recently, Abel et al. [22] investigated the effects of 

non-uniform heat source (sink) on the flow and heat transfer 

of a power-law fluid on a linearly stretching/shrinking sheet in 

the presence of magnetic field and variable thermal 

T 
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conductivity. Xa and Lia [23] presented a theoretical analysis 

for the linear boundary-layer flow and heat transfer of a non-

Newtonian power-law fluids on a non-linearly 

stretching/shrinking sheet with variable wall temperature. 

Motivated by the above investigations, in this work, we deal 

with the problem of flow and heat transfer of a non-

Newtonian power-law fluids past a non-linearly stretching 

shrinking sheet in the presence of viscous dissipation and non-

uniform heat generation/absorption. It can be seen that the 

problem considered in Xu and Liao [24] is a specific case of 

the present work. Recently, Aman and Ishak [26] investigated 

the problem of mixed convection boundary layer flow 

adjacent to a stretching vertical sheet in an incompressible 

electrically conducting fluid in the presence of a transverse 

magnetic field. Recently, Elbashbeshy et al. [27] investigated 

the effects of thermal radiation and magnetic field on an 

unsteady mixed convection flow and heat transfer over an 

exponentially stretching permeable surface in the presence of 

internal heat generation/absorption. To the best of the author 

knowledge, there seems to be no existing document about heat 

transfer characteristics of a non-Newtonian power law fluid 

flow over a nonlinearly stretching vertical sheet, taking into 

account the effect of thermal buoyancy, thermal radiation and 

constant heat flux condition. Therefore the purpose of the 

present paper is to examine the heat transfer aspects in a non-

Newtonian power law fluid flow driven by a non-linearly 

impermeable stretching vertical sheet in the presence of 

thermal radiation and constant heat flux.Using the similarity 

transformations, the set of governing P.D.E. and the boundary 

conditions are reduced to a system of non-linear O.D.E. which 

solved numerically using a fourth order Runge-Kutta scheme 

coupled with the shooting method for various parameters.  

 

II. FORMULATION OF THE PROBLEM 

 Consider a steady, two-dimensional MHD flow and 

heat transfer of an incompressible non-Newtonian fluid 

obeying the power-law model past a stretching/shrinking 

porous sheet, the origin is located at the slit, through which 

the sheet is drawn through the fluid medium. The x-axis is 

chosen along the sheet and y-axis is taken normal to it. The 

continuous stretching/shrinking sheet is assumed to have 

power-law velocity u = c x
m
; c ( > 0) is a constant and m is an 

exponent. The steady two-dimensional boundary-layer 

equation for non-Newtonian fluids taking into account the 

viscous dissipation and internal heat generation effects in the 

energy equation are: 
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Where u and v are the velocity component in the x and y 

directions, respectively.ρ and κ yare the fluid density and the 

thermal conductivity , respectively. N is the power low index. 

If n˂1 the fluid is said to be pseudo plastic, if n˃1 it is known 

as dilatants and when n=1, it becomes Newtonian fluid. g is 

the acceleration  due to gravity,β is the thermal expansion 

coefficient, T is the temperature of the fluid , cp is specific 

heat flux. 

We assumewe assume that the temperature difference within 

the flow are small such that T
4
 may be expressed as a linear 

function of the temperature. Expanding T
4
 in a Taylor series 

about T∞ and neglecting higher-orderterms, we have : 

4 3 44 3T T T T                                                                  (4) 
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the internal heat generation or absorption term q
m
 is modeled 

as:
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where A and B are the coefficient of space and temperature 

dependent heat generation/absorption respectively. Note that 

the case A > 0, B > 0 corresponds to internal heat generation, 

that A < 0, B < 0, corresponds to internal heat absorption f() 

is the dimensionless stream function,  is the dimensionless 

temperature of the fluid in the boundary layer region and  is 

the stream function that satisfies the continuity equation (1) 

and is defined by 
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With boundary condition 
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III. NUMERICAL SOLUTIONS 

 

In this section, an efficient Runge–Kutta fourth order method 

along with shooting technique has been employed to analyze 

the flow model for the above coupled ordinary differential 

Eqs. (11), (12) along with the boundary conditions (13), (14) 

for different values of the governing parameters. The system 

(11), (12) with the boundary conditions (13), (14), is 

integrated numerically by means of Runge–Kutta method with 

systematic estimate of ''(0)f  and (0) with Newton–

Raphson shooting technique until the boundary conditions at 

the infinity '( ) ( )f and     decay exponentially to zero. 

At every position, the iteration process continues until the 

convergence criterion for all the variables, 10
-6

 , is achieved. 

In order to get a clear insight of physical problem, numerical 

results are displayed with the help of graphical illustrations. 

Also, to asses the accuracy of the numerical method, 

comparison with those obtained by Ahmed M. Megahed [28] 

are shown in Table 1. From this comparison and without any 

doubt, from this table, we can claim that our results are in 

excellent agreement with this reference. Also, the obtained 

results demonstrate reliability and efficiency of the proposed 

method. 

 

IV. RESULTS AND DISCUSSION 

The system of non-linear O.D.E. (11) and (12) with the 

boundary condition (13-14) is solved numerically using the 

shooting technique with the fourth-order Runge-Kutta 

scheme. We guessing of f
''
(0) and '(0) by showing technique 

until the boundary conditions at infinity are satisfied. The step 

size = 0.001 is used while obtaining the numerical solution 

and accuracy up to seventh decimal place which very 

sufficient for converses.In this method, we choose suitable 

finite values which depended on the values of the parameters 

used. The computations where done by a programme which 

uses a symbolic and computational computer language 

MATLAB. 

It is found that the velocity within the boundary layer is 

monotonically tends to zero as the distance increases from the 

boundary. The effect of the increasing values of the power law 

index n is to reduce the horizontal boundary layer thickness. 

That is, the thickness is much larger for shear thinning 

(pseudo plastic; 0\n\1) fluids than that of shear thickening 

(dilatants; 1\n\2) fluids. This behavior is noticeable in Fig. 1. 

The effect of the same parameter on thetemperature 

distribution hðgÞ in the boundary layer is shown in Fig. 2. It 

is observed from this figure that,increasing the values of the 

power law index n leads to thicken the thermal boundary layer 
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thickness. Also, itis seen that the temperature distribution 

hðgÞ asymptotically tends to zero in the free stream region. 

 
Figure-1The behavior of the velocity distribution for various values of n 

 
 
Figure-2The behavior of the temperature distribution for various values of n 

 
Fig. 3 display the effect of temperature dependent heat 

absorption ( < 0) or generation  (> 0) parameter on the 

dimensionless temperature. It is shown that the effect of heat 

absorption causes a drap in the temperature as the heat 

following from the wall is absorbed. When > 0, the heat 

generation brings about a temperature increase throughout the 

entire boundary layer for the case of heat absorption  (< 0) 

one sees that the thermal boundary layer thickness as the 

absolute value of  increases. 

Figure 3Temperature profiles for various values of , with n=0.8, R=0.1, 

Ec=0.1, Pr=10, =0 

 

Figure 4 Temperature profiles for various values of , with n=1.2, R=0.1, 

Ec=0.1, Pr=10, =0 

 

The effect of the Prandtl number Pr on the dimensionless 

temperature profiles is illustrated in figure 5 and figure 6. It 

can be seen that the dimensionless temperature decreases with 

increasing Pr for both n < 1 and n > 1. Physically, a higher 

value of Pr is equivalent to decreasing thermal conductivity 

which reduces conduction and thereby increases the wall heat 

transfer 

Figure 5 Temperature profiles for various values of Pr, with n=0.8, R=0.03, 

Ec=0.1, *=.03, =0.1 
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Figure 6Temperature profiles for various values of Pr, with n=0.8, λ=0.01, 

Ec=0.1, *=.03, =0.1 

 
The dimensionless temperature distribution within the 

boundary layer region for various values of Eckert number Ec 

are illustrated in figure7 and figure 8. As compared to the case 

for no viscous dissipation, it can be seen that the 

dimensionless temperature increases as Ec increases. The 

increase in the fluid temperature due to frictional heating is 

observed to be more pronounced for higher value of Ec as 

expected. 

Figure 7 Temperature profiles for various values of Ec with 

fixed values of n=0.8,*=.01,=0.1,Pr=10 

 

 
Figure 8 Temperature profiles for various values of Ec with fixed values of 

n=1.2,*=.01,=.1,Pr=10 

 
Figure 9 the behavior of the velocity profile for various values of λ 

 
 

Figure 10  The behavior of the temperature profile for various values of λ 
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V. CONCLUSIONS 

The problem of the MHD boundary layer flow and heat 

transfer of a non-Newtonian power-law fluids on a non-

isothermal stretching porous surface in presence of non-

uniform heat generation or absorption and viscous dissipation 

was studied. The governing equation describing the problem 

are transformed into a non-linear O.D.E. by using similarity 

transformation (when m=1/3, r=2/3) the transformed O.D.E. 

were solved numerically using fourth order Runge-Kutta 

method coupled with the shooting technique.  

(i) It was found that the axial velocity across the 

stretching sheet decreases and the temperature increases with 

the increase in the value of n. 

(ii) The temperature increases with increases  (n > 1, n 

< 1) and Eckert number Ec (n > 1, n < 1) and decreases with 

increase the Prandtl number Pr (n < 1, n > 1). 

(iii) The suction parameter R has significant reducing 

effects on the temperature profiles. 
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