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Abstract: We investigated the MHD peristaltic flow of a 

Newtonian fluid with variable viscosity in an asymmetric 

channel under the assumptions of long wavelength and 

low Reynolds number assumptions. The expressions for 

the velocity, pressure gradient, pressure rise and friction 

force at the upper and lower wall per one wavelength are 

obtained by a regular perturbation technique. The effects 

of viscosity parameter , Hartmann number M , wave 

amplitudes ,a b  and phase shift    on the above physical 

quantities are discussed in detail.    

 

I. INTRODUCTION 

he word peristalsis stems from the Greek word 

peristalitikos, which means clasping and compressing. It 

is used to describe a progressive wave of contraction along a 

channel or tube whose cross-sectional area consequently 

varies in physiology, it has been found to be involved in many 

biological organs, e.g. in transport of spermatozoa in the 

ductus efferentes of the male reproductive tracts and in the 

cervical canal, in the movement of ovum in the fallopian tubes 

and in the vasomotion of small blood vessels as well as blood 

flow in arteries. Some worms use peristalsis as a means of 

locomotion. Roller and Finger pumps using viscous fluid also 

operate on this principle. The mechanism of peristaltic 

transport has been exploited for industrial applications like 

sanitary fluid transport, blood pumps in heart lung machine 

and transport of corrosive fluid where the contact of the fluid 

with the machinery parts is prohibited.  

The accuracy of the fluid mechanics of peristaltic 

transport has been confirmed experimentally by Latham 

(1966) and Weinberg et al. (1971). The earliest models of 

peristaltic pumping are based on the assumption of trains of 

periodic sinusoidal waves in infinitely long two-dimensional 

channels or axisymmetric tubes (Shapiro, 1967; Fung and 

Yih, 1968; Yih and Fung, 1969; Shapiro et al.1969). These 

models which were applied primarily to characterize the basic 

fluid mechanics of pumping process, fall into two classes: (1) 

the model developed by Fung and Yih which is restricted to 

small peristaltic wave amplitudes but has no restrictions on 

Reynolds number; and (2) the lubrication-theory model 

introduced by Shapiro et al. (1969) in which effects of fluid 

inertial and wall curvature are neglected but no restrictions are 

placed on wave amplitude. A complete review of peristaltic 

transport is given by Jaffrin and Shapiro (1971). The 

lubrication-theory model is applicable globally in the limit of 

totally occluding peristaltic waves and is found to be a 

reasonably accurate approximation of global pumping 

characteristics at a small Reynolds number and wall 

curvature, Jaffrin (1973). 

 There are many fluids whose behaviour cannot be 

described by the Navier-Stokes model with constant viscosity. 

Also the inadequacy of the classical Navier-stokes theory of 

Newtonian fluids in predicting the behaviours of some fluids, 

especially those with high molecular weight, leads to the 

developments of non-Newtonian fluid mechanics. The 

governing equations for such fluids are of higher order, much 

more complicated and subtle than the Newtonian fluid. 

Peristaltic transport of a power-law fluid with variable 

consistency has been studied by Shukla and Gupta (1982). 

Srivastava et al. (1983) studied the peristaltic transport of a 

fluid with variable viscosity through a non-uniform tube. Abd 

El Hakeem et al. (2004) have investigated the effect of 

endoscope and fluid with variable viscosity on peristaltic 

motion. Abd El Hakeem et al. (2003) have investigated the 

peristaltic flow of a fluid with variable viscosity under the 

effect of magnetic held. 

The magnetic hydrodynamic flow of blood in a 

channel having walls that execute peristaltic waves using long 

wave length approximation has been discussed by Agrawal 

and Anwaruddin (1984). Peristaltic flow of Johnson-

Segalman fluid under effect of a magnetic field is studied by 

Elshahed and Haroun (2005). Nonlinear peristaltic transport 

of MHD flow through a porous medium was studied by 

T 
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Mekheimer and Al-Arabi (2003).  Mekheimer (2004) studied 

the peristaltic transport of blood under effect of a magnetic 

field in non uniform channels.  Mekheimer (2008) also 

studied the non-linear peristaltic transport of magneto 

hydrodynamic flow in an inclined channel using long 

wavelength assumption.  

 Eytan and Elad (1999) have presented a 

Mathematical model of wall-induced peristaltic fluid flow in a 

two dimensional channel with wave trains having a phase 

difference moving independently on the upper and lower 

walls to simulate intra-uterine fluid motion in a sagittal cross-

section of the uterus. They have obtained a time dependent 

flow solution in a fixed by using lubrication approach. Mishra 

and Ramachandra Rao (2003) discussed the peristaltic motion 

of viscous fluid in a two dimensional asymmetric channel 

under long wave length assumption. Ramachandra Rao and 

Mishra (2004) also analyzed the curvature effects on 

peristalsis in an asymmetric channel. Effect of variable 

viscosity on the peristaltic transport of a Newtonian fluid in an 

asymmetric channel has been studied Hayat and Ali (2008). 

 

II. MATHEMATICAL FORMULATION 

 We consider the peristaltic flow of an incompressible 

viscous Newtonian fluid with variable viscosity in a two-

dimensional asymmetric channel under the effect of a 

magnetic field. The channel asymmetry is produced by the 

propagation of waves on the channel walls traveling with 

same speed c  but with different amplitudes and phases. A 

rectangular co-ordinate system ( , )X Y  is chosen such that 

X -axis lies along the centre line of the channel in the 

direction of wave propagation and Y -axis transverse to it, as 

shown in Fig. 1. A uniform magnetic field 0B  is applied in 

the transverse direction to the flow. The electrical 

conductivity of the fluid is assumed to be small so that the 

magnetic Reynolds number is small and therefore the induced 

magnetic field is neglected. The external electric field is zero 

and the electric field due to polarization of charges is also 

negligible. Also heat due to Joule dissipation is neglected. 

 
Fig. 1. The Physical Model 

The channel walls are defined by 

1 1

2
( , ) cos ( )Y H X t d a X ct




   

 (upper  wall)                     (2.1)

2 2

2
( , ) cos ( )Y H X t d a X ct






 
      

 

(lower wall)                          (2.2) 

where 1 2,a a  are the amplitudes of the waves, X  is the 

wave length, 2d  is the width of the channel,   is the phase 

difference which varies in the range 0    , 0   

corresponds to a symmetric channel with waves out of phase 

and    defines the waves with in phase and further 

1 2,a a  and   satisfies the condition 

2 2 2

1 2 1 22 cos (2 )a a a a d   . 

We shall carryout this investigation in a co-ordinate 

system moving with wave speed c, in which the boundary 

shape is stationary. The co-ordinates and velocities in the 

laboratory frame ( , )X Y and the wave frame ( , )x y are 

related by 

 

, , , , ( ) ( , )x X ct y Y u U c v V p x P X t              (2.3) 

where and  are the velocity components,    

and    are pressures in the wave and fixed frames of 

reference, respectively. 

 The equations governing the flow field in a wave 

frame are 

0
u v

x y

 
 

 
                        (2.4) 

2

0

( ) ( )

( ) sin

u v u
y yu v p

x x y x yu v
x y x

B u c g

 


  

        
           

               
     

   

                                                                                                

                                                                                            (2.5) 

( ) ( ) cos
v v p v u v

u v y y g
x y x x x y x y

    
             

            
             

                                                                                            

                                                                                            (2.6) 

where   is the density, g  - acceleration due to gravity, 0B  

magnetic field strength and   - electrical conductivity. The 

dimensional boundary conditions are 

u c    at 1 2,y H H
                             

 (2.7) 

 Introducing the following non-dimensional quantities

x y a u
x = , y = ,  = , u

a c


 
 ,

 ,  u v  ,  U V p

P
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2

0

v pa ct
v = , p = , t = , 

c c   
 

1 2 1 2
1 2, , ,

H H a a
h h a b

d d d d
     

where 
0 is the viscosity constant,   is the wave number 

and a  and b are amplitude ratios, into the equations (2.1), 

(2.2) and (2.4) – (2.6) dropping the bars, we obtain 

1 1 cos2h a x  ,
2 1 cos(2 )h b x                   (2.8) 

0
u v

x y

 
 

 
                       (2.9) 

2 2

2

2 ( ) ( )

Re
Re

( 1) sin

u v u
y y

u v p x x y x y
u v

x y x
M u

Fr

   





        
                       

    
   
 

 

                                                                                                          

                                                                                         (2.10) 

2 2 2

3

( ) 2 ( )

Re
Re

cos

v u v
y y

v v p x x y y y
u v

x y y

Fr

    



 

         
                       

    
 
 

 

                                 

                                                                                          (2.11) 

where 

0

Re
dc


  is the Reynolds number, 

2c
Fr

dg


 is the 

Froude number, 
0

0

M B d





 is the Hartmann number and 

under the assumptions of low Reynolds number ( Re 0 ) 

and long wave length ( 1  ), the equations (2.10) and 

(2.11) become 

2

1

( ) Re
( 1) sin

1

p y u
O M u

x y y Fr






   
      

    

                   (2.12) 

p
O

y





                                         (2.13) 

The corresponding dimensionless boundary conditions are 

1u    at 1 2,y h h                      (2.14) 

 From Eq. (2.13) we conclude that p  is only function 

of x  alone. Therefore, the Eq. (2.12) can be rewritten as  

2 2Re
( ) sin

u dp
y M u M

y y dx Fr
 
  

    
  

                    (2.15) 

 The non-dimensional viscosity here is  of the 

following form 

( ) 1y y    or ( ) yy e    for 1                                 (2.16) 

where   is the viscosity parameter. 

 The dimensionless volume flow rate q  in the wave 

frame of reference is given by  

1

2

h

h

q udy                        (2.17) 

The instantaneous flux ( , )Q x t  in the laboratory frame is 

1 1 1

2 2 2

1 2( , ) ( 1)  1 

h h h

h h h

Q x t u dy u dy dy q h h        
                   (2.18) 

 The time averaged volume flow rate over one period 

T
c

 
 
 

 of the peristaltic wave is 

1

1 2

0 0

1
( , ) ( ) 2

T

Q Q x t dt q h h dx q
T

      
                   (2.19) 

III. SOLUTION 

 We seek for a regular perturbation solution in terms 

of a small parameter   as follows   

2

0 1 ( )u u u o                          (3.1) 

20 ( )
dpdp dp

o
dx dx dx

                          (3.2) 

2

0 1 ( )q q q o                          (3.3) 

 Substituting the equations (3.1) and (3.2) into the 

equations (2.14) and (2.15) and using Eq. (2.16), we get, the 

system of order zero 
2

2 20 0
02

Re
sin

u dp
M u M

y dx Fr



   


                     (3.4) 

 with the dimensionless boundary conditions 

0 1u    at 1 2,y h h                        (3.5) 

and the system of order one 
2 2

21 1 0 0
12 2

u dp u u
M u y

y dx y y

  
   

  
                                (3.6) 

 with the corresponding dimensionless boundary 

conditions  

1 0u   at 1 2,y h h                                                   (3.7) 

3.1 Solution of order zero 

 Solving Eq. (3.4), using the boundary conditions 

(3.5), we get 

 0
0 1 22

1 Re
sin cosh sinh 1 1

dp
u c My c My

M dx Fr


 
     

 

                                                     

                                                                                            (3.8) 

where  

2 1
1

2 1

sinh sinh

sinh ( )

Mh Mh
c

M h h





 and

1 2
2

2 1

cosh cosh

sinh ( )

Mh Mh
c

M h h





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The volume flow rate 
0q  in the wave frame of 

reference is given by  

 
 

1

2

0
0 0 3 1 23

1 Re
sin

h

h

dp
q u dy c h h

M dx Fr


 
     

 


                   (3.9) 

here  1 2 1 2 2 1

3

2 1

2 2cosh ( ) ( )sinh ( )

sinh ( )

M h h M h h M h h
c

M h h

      
  

 

 

From Eq. (3.9), we have 

 

 

3

0 1 2 2 10

1 2 1 2 2 1

sinh ( ) Re
sin

2 2cosh ( ) ( )sinh ( )

q h h M M h hdp

dx M h h M h h M h h Fr


  
 

    

   (3.10) 

3.2 Solution of order one 

 Substituting Eq. (3.8) in Eq. (3.6) and solving it by 

using the boundary conditions (3.7), we obtain 

 

 

1
1 22

2

0
1 1 2

0 0
4 5

1
sinh sinh 1

Re
sin sinh cosh

4

1 Re 1 Re
sin cosh sin sinh

4 4

dp
c My c My

M dx

dpy
u c My c My

M dx Fr

dp dp
c My c My

M dx Fr M dx Fr



 

  
   

  
  

     
  

    
       

    

 

           (3.11) 

where 

 
 2 21 2

4 1 2 2 12

2 1

1 cosh ( )
( sinh sinh

sinh ( )

M h h
c h Mh h Mh

M h h

 
 


 and 

 
 2 21 2

5 1 2 2 12

2 1

1 cosh ( )
( cosh cosh

sinh ( )

M h h
c h Mh h Mh

M h h

 
 


 

The volume flow rate 1q  in the wave frame of 

reference is given by  

1

2

1 1

h

h

q u dy 

 

 

1 2 1 2 2 11

3

2 1

22 2
1 202 1

2 2

2 1

2 2cosh ( ) ( )sinh ( )1

sinh ( )

1 cosh ( )( ) Re
sin

4 sinh ( )

M h h M h h M h hdp

M dx M h h

M h hdph h

M dx Fr M h h


      
 

 
       

   

                     

                                                                                                                            

                                                                                          (3.12) 

From Eq. (3.12), we have 

 

 

3

1 2 1

1 2 1 2 2 1
1

22 2
1 202 1

6

2 1

sinh ( )

2 2cosh ( ) ( )sinh ( )

1 cosh (( ) Re
sin

4 sinh ( )

q M M h h

M h h M h h M h hdp

dx M h hdph h
c

dx Fr M h h


 
 

    
 
 

      
   

 

                                                               (3.13) 

where 

 6

1 2 1 2 2 12 2cosh ( ) ( )sinh ( )

M
c

M h h M h h M h h


    

          

  

Substituting from equations (3.10) and (3.13) into Eq. (3.2), 

we get  

  
 

   

 

3

1 2 2 1

1 2 1 2 2 1

22 2 4

2 1 1 2 0 1 2

2

1 2 1 2 2 1

sinh ( )

2 2cosh ( ) ( )sinh ( )

( ) 1 cosh ( )

2 2cosh ( ) ( )sinh ( )

Re
sin

M q h h M h h

M h h M h h M h h

h h M M h h q h hdp

dx M h h M h h M h h

Fr





   
 

     
 

      
     
 
 
 
 

                                                                                   

                                                                                          (3.14) 

 Using 
0 1q q q   and neglecting 

2( )o   terms, 

Eq. (3.14), we get 

 
 

   

 

3

1 2 2 1

1 2 1 2 2 1

22 2 4

2 1 1 2 1 2

2

1 2 1 2 2 1

sinh ( )

2 2cosh ( ) ( )sinh ( )

( ) 1 cosh ( )

2 2cosh ( ) ( )sinh ( )

Re
sin

M q h h M h h

M h h M h h M h h

h h M M h h q h hdp

dx M h h M h h M h h

Fr





   
 

     
 

      
     
 
 
 
 

         (3.15) 

  

The pressure rise  p  per one wave length is given as   

1

0

dp
p dx

dx
                                      (3.16)

  

IV. RESULTS AND DISCUSSION 

 

Fig. 2 shows the variation of pressure rise p  with 

time averaged flux Q  for different values of viscosity 

parameter  with 0.5a  , 0.7b  , 
4


  ,  1M  , 

Re 1 , 0.1Fr     and 
4


 

.  It is observed that, in the 

pumping region ( 0)p   the Q  decreases with an 

increase in  , while in the free-pumping  0p   and 

co-pumping  0p   regions it increases with increasing 

 . 

 The variation of pressure rise p  with time 

averaged flux Q  for different values of Hartmann number 

M with 0.5a  , 0.7b  , 
4


  ,  0.1  , Re 1 , 

0.1Fr   and 
4


   is shown in Fig. 3. It is observed that 

any two pumping curves intersect at a point in first quadrant. 

To the left of this point of intersection the  Q  increases with 

increasing M and to the right of this point of intersection Q  

decreases with M . As 0  , 0M   and 0   
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results agree with those results obtained by Mishra and 

Ramachandra Rao(2003). 

Fig. 4 depicts the variation of pressure rise p  with 

time averaged flux Q  for different values of phase shift   

with 0.5a  , 0.7b  , 0.1  ,  1M  , Re 1 , 

0.1Fr     and 
4


  .   It is found that, in the pumping 

region the Q  decreases with an increase in  , while in the 

free-pumping  and co-pumping regions it increases with 

increasing  . 

 

The variation of pressure rise p  with time 

averaged flux Q  for different values of lower wave 

amplitude a with 0.1  , 0.7b  , 
4


  ,  1M  , 

Re 1 , 0.1Fr     and 
4


   is presented in Fig. 5. It is 

observed that, in the pumping region the Q  increases with an 

increase in a , while in the free-pumping  0p   and co-

pumping  0p   regions it decreases with increasing a . 

Fig. 6 illustrates the variation of pressure rise p  

with time averaged flux Q  for different values of upper wave 

amplitude b  with 0.5a  , 0.1  , 
4


 

, 1M  , 

Re 1 , 0.1Fr     and 
4


 

.  It is observed that, in the 

pumping region the Q   increases with increasing b , while in 

the free-pumping  0p   and co-pumping  0p   

regions it increases with increasing b . 

 The variation of pressure rise p  with time 

averaged flux Q  for different values of Reynolds number 

Re  with 0.5a  , 0.7b  , 
4


  ,  1M  , 0.1  , 

0.1Fr     and 
4


 

 is shown in Fig. 7. It is observed that, the 

time averaged flux Q  increases with increasing Re  in all 

the three regions. 

  Fig. 8 shows the variation of pressure rise p  with 

time averaged flux Q  for different values of viscosity 

parameter  with 0.5a  , 0.7b  , 
4


  ,  1M  , 

Re 1 , 0.1Fr     and 
4


  .  It is found that, the time 

averaged flux Q  decreases with an increase in Fr  in all the 

three regions. 

The variation of pressure rise p  with time 

averaged flux Q  for different values of inclination angle   

with 0.5a  , 0.7b  , 
4


  ,  1M  , Re 1 , 

0.1Fr     and 
4


   is shown in Fig. 9. It is noted that, 

the time-averaged flux Q  increases with increasing   in all 

the tree regions.   

 

Q  

Fig. 2. The variation of pressure rise p  with time averaged flux Q  for 

different values of viscosity parameter  with 0.5a  , 0.7b  , 

4


 

,  1M  , Re 1 , 0.1Fr     and 

4


 

. 

 

Fig. 3. The variation of pressure rise p  with time averaged flux Q  for 

different values of Hartmann number M with 0.5a  , 0.7b  , 

4


  ,  

0.1  , Re 1 , 0.1Fr   and 

4


  . 
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Fig. 4. The variation of pressure rise p  with time averaged flux Q  for 

different values of phase shift   with 0.5a  , 0.7b  , 0.1  ,  

1M  , Re 1 , 0.1Fr     and 

4


 

. 

 

 

Fig. 5. The variation of pressure rise p  with time averaged flux Q  for 

different values of lower wave amplitude a with 0.1  , 0.7b  , 

4


 

,  1M  , Re 1 , 0.1Fr     and 

4


 

. 

 

 

Fig. 6. The variation of pressure rise p  with time averaged flux Q  for 

different values of upper wave amplitude b  with 0.5a  , 0.1  , 

4


  ,  1M  , Re 1 , 0.1Fr     and 

4


  . 

 

 

 

Fig. 7. The variation of pressure rise p  with time averaged flux Q  for 

different values of Reynolds number Re with 0.5a  , 0.7b  , 

4


  ,  1M  , 0.1  , 0.1Fr     and 

4


 

 

 

 

Fig. 8. The variation of pressure rise p  with time averaged flux Q  for 

different values of viscosity parameter  with 0.5a  , 0.7b  , 

4


 

,  1M  , Re 1 , 0.1Fr     and 

4


  . 
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Fig. 9. The variation of pressure rise p  with time averaged flux Q  for 

different values of inclination angle  with 0.5a  , 0.7b  , 

4


  ,  1M  , Re 1 , 0.1Fr     and 

4


  . 
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