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Abstract: - Scheduling is one of the most important issues in the 

planning and operation of manufacturing system, and scheduling 

has gained much attention increasingly in the recent years. The 

flexible job shop scheduling problem (JSP) is one of the most 

difficult problems in this area. It consists of scheduling a set of 

jobs on a set of machines with the objective to minimize a certain 

make span time. Each machine is continuously available from 

time zero, processing one operation at a time without 

preemption. Each job has a specified processing order on the 

machine which are fixed and known in advance. Moreover, a 

processing time is also fixed and known. Different researcher use 

different algorithms to optimize the make span time. In this 

paper study has been focused on the different algorithms to 

optimize the make span time. Now a day’s different algorithms 

that are used are Genetic Algorithm, Artificial Neural Network, 

Ant Colony Optimization and Particle Swarm Optimization. 

 

Keywords: Genetic Algorithm (GA), Ant Colony Optimization 
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I. INTRODUCTION 

he job shop scheduling problem is to decide a schedule of 

jobs that is endowed with pre-set operation series in a 

multi-machine atmosphere. In the traditional job shop 

scheduling problem (JSP), n-jobs are processed to the 

finishing point on m-unrelated machines. For each and every 

task, technology limitations spell out an absolute and 

distinctive routing which is set and identified earlier. In 

addition, processing periods are set and identified previously.  

This synopsis deals with the situations in which the 

effectiveness measure (time, cost, distance, etc.) is a function 

of the order or schedule of performing a series of jobs (tasks). 

The selection of the appropriate order in which waiting 

customers may be served is called scheduling. Scheduling 

problems can be classified in two groups: 

1. In the first group, there are n jobs to be performed, where 

each job requires processing on some or all of m different 

machines. The order in which these machines are to be used 

for processing each job as well as the expected or actual 

processing time of each job on each of the machines is known. 

We can also measure the effectiveness for any given schedule 

of jobs at each of the machines and we wish to select from the 

(n!)
m
 theoretically feasible alternativeness measure(e.g., 

minimizes the total elapsed time from the start of the first job 

to the completion of the last job as well as idle time of 

machines). A technologically feasible sequence is one which 

satisfies the constraints (if any) on the order in which each job 

must be performed through the m machines. The technology 

of manufacturing processes renders many schedules 

technologically infeasible. For example, a part must be 

degreased before it is painted; similarly, a hole must be drilled 

before it is threaded. 

Although, theoretically, it is always possible to select the best 

schedule by testing each one; in practice, it is impossible 

because of the large number of computations involved. For 

example, if there are 4 jobs to be processed at each of the 5 

machines (i.e., n=4 and m=5), the total number of 

theoretically possible different schedules will be (4!)
5 

= 

7,962,624. Of course, as already said, some of them may not 

be feasible because the required operations must be performed 

in a specified order. Obviously, any technique which helps us 

arrive at an optimal (or at least approximately so) schedule 

without trying all or most of the possibilities will be quite 

valuable.  

2. The second group of problems deals with job shops having 

a number of machines and a list of tasks to be performed. 

Each time a task is completed by a machine, the next task to 

be started on it has got to be decided. Thus the list of tasks 

will change as fresh orders are received. 

Unfortunately, both types of problems are intrinsically 

difficult. While solutions are possible for some simple cases 

of the first type, only some empirical rules have been 

developed for the second type till now. 

In the scheduling problems, there are two or more customers 

to be served (or jobs to be done) and one or more facilities 

(machine) available for this purpose. We want to know when 

each job is to begin and what its due date is. We also want to 

know which facilities are required to be each job, in which 

T 
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order these facilities are required and how long each operation 

is to take. 

Scheduling problems have been most commonly encountered 

in production shops where different products are to be 

processed over various combinations of machines. 

However, scheduling problems can arise even where only one 

service facility is involved, for example, a number of 

programs waiting to get on a computer or a number of patients 

waiting for a doctor. 

A general scheduling problem may be defined as follows: 

Let there be n jobs (1, 2, 3 ... n), each of which has to be 

processed, one at a time, on each of m machines (A, B, C ...) 

The order of processing each job through the machines is 

given (for example, job 1 is processed on machines A, C, B, 

in this order). Also, the time required for processing each job 

on each machine is given. The problem is to find among (n!)
m

 

possible schedules, that technologically feasible schedule for 

processing the jobs which gives the minimum total elapsed 

time for all the jobs. 

 
II. DIFFERENT OPTIMIZATION METHOD 

 

In 2009, Parviz Fattahi et al. [1] The literature of FJSP is 

considerably sparser than the literature of JSP. Bruker and 

Schile were among the first to address this problem. They 

developed a polynomial algorithm for solving the flexible job 

shop problem with two jobs. For solving the realistic case 

with more than two jobs, two types of approaches have been 

used: hierarchical approaches and integrated approaches. In 

hierarchical approaches assignment of operations to machines 

and the sequencing of operations on the resources or machines 

are treated separately, i.e. assignment and sequencing are 

considered independently. In the integrated approaches, 

assignment and sequencing are not differentiated. Hierarchical 

approaches are based on the idea of decomposing the original 

problem in order to reduce its complexity. This type of 

approach is natural for FJSP since the routing and the 

scheduling sub-problem can be separated. Brandimarte was 

the first in applying this decomposition approach for the FJSP. 

He solved the routing sub-problem using some existing 

dispatching rules and then focused on the scheduling sub-

problem, which is solved using a tabu search heuristic. Saidi 

and Fattahi presented a mathematical model and a tabu search 

algorithm to solve the flexible job shop scheduling problem 

with sequence-dependent setups. They used a hierarchical 

approach with two heuristic to solve this problem. The first 

one for assigning each operation to a machine out of a set of 

capable machines and the second one for sequencing the 

assigned operations on all machines in order to obtain a 

feasible schedule minimizing the Makespan. Another work in 

this field was represented by Kacem et al. and Xia and Wu. 

Integrated approaches were used by considering assignment 

scheduling at the same time. Hurink et al. proposed a tabu 

search heuristic in which reassignment and rescheduling are 

considered as two different types of moves. The integrated 

approach which had been represented by Dauzere-Peres and 

Paulli was defined a neighborhood structure for the problem 

where there was no distinction between reassigning and 

resequencing an operation. Mastrololli and Gambardella 

improved Dauzere-Peres tabu search techniques and presented 

two neighborhood functions. 

 

This paper considers flexible jobs scheduling problem with 

overlapping in operations. Since the problem is well known as 

NP-Hard class, a simulated annealing algorithm is developed 

to solve large scale problems. Moreover, a mixed integer 

linear 

 

 
programming (MILP) method is presented to validate the 

proposed algorithm. The approach is tested on a set of random 

generated test problems to evaluate the behaviour of the 

proposed algorithm. The reminder of this paper is organized 

as follows: Section 2 describes the problem under 

consideration and presents a mixed integer linear 

programming model. The solution procedure and hierarchical 

approach are presented in Section 3. Section 4 presents 

numerical experiments and discussion. Section 5 includes 

concluding remarks. 

 

In 2012, D. Prot et al. [2] The tabu search (see Glover & 

Laguna, 1997) is based on a neighborhood search procedure 

to iteratively move from a current solution s to a solution s‟ in 

the neigborhood N(s) of s until some stopping criterion. In the 

current study, a solution is represented by a priority list L that 

contains each operation to schedule with an associate given 

mode. A direct neighbor then corresponds to a list L0 that can 

be obtained by doing only one change in the list L. At the first 

iteration of the search, the first priority list is built using one 

of the priority rules presented before. Once a list is fixed, the 

corresponding schedule can be built either using the Semi 

Active SGS or the NonDelaySGS1. So, we propose two 

different versions of the tabu search, that we will compare in 

the final results (see Section 7). This approach is motivated by 

the fact that, given a priority list, the two SGS do not have the 

same behavior, and it is easier to manually guide solutions 

obtained by SemiActiveSGS since the operation order on each 

machine is exactly the same as in the priority list. However, 

NonDelaySGS1 implicitly tries to reduce setup times and 

hence may obtain better results. 
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In 2011, Guohui Zhang et al. [3] The advantage of GA with 

respect to other local search algorithms is due to the fact that 

more strategies could be adopted together to find good 

individuals to add to the mating pool in a GA framework, both 

in the initial population phase and in the dynamic generation 

phase (Pezzella et al., 2007). In this paper, the proposed GA 

adopts an improved chromosome representation and a novel 

initialization approach, which can balance the workload of the 

machines well and converge to suboptimal solution in short 

time. 

Chromosome representation 

Better efficiency of GA-based search could be achieved by 

modifying the chromosome representation and its related 

operators so as to generate feasible solutions and avoid repair 

mechanism. Ho et al. (2007) developed extensive review and 

investigated insightfully on chromosome representation of 

FJSP. Mesghouni, Hammadi, and Borne (1997) proposed 

parallel job representation for solving the FJSP. The  

chromosome is represented by a matrix where each row is an 

ordered sequence of each job. Each element of the row 

contains two terms, the first one is the machine processing the 

operation, and the second one is the starting time of this 

operation. 

 
Population initialization is a crucial task in evolutionary 

algorithms because it can affect the convergence speed and 

the quality of the final solution (Shahryar, Hamid, & Magdy, 

2007). In this section, we mainly present two methods to solve 

the first sub-problem through assigning each operation to the 

suitable machine. These methods take into account both the 

processing time and the workload of the machines. 

Global Selection (GS) 

We define that a stage is the process of selecting a suitable 

machine for an operation. Thus this method records the sum 

of the processing time of each machine in the whole 

processing stage. Then the machine which has the minimum 

processing time in every stage is selected. In particular, the 

first job and next job are randomly selected. Detailed steps are 

as follows: 

Step 1: Create a new array to record all machines‟ processing 

time, initialize each element to 0; 

Step 2: Select a job randomly and insure one job to be 

selected only once, then select the first operation of the job; 

Step 3: Add the processing time of each machine in the 

available machines and the corresponding machine‟s time in 

the time array together; 

Step 4: Compare the added time to find the shortest time, then 

select the index k of the machine which has the shortest time. 

If there is the same time among different machines, a machine 

is selected randomly among them; 

Step 5: Set the allele which corresponds to the current 

operation in the MS part to k; 

Step 6: Add the current selected machine‟s processing time 

and its corresponding allele in the time array together in order 

to update the time array; 

Step 7: Select the next operation of the current job, and 

execute Step 3 to Step 6 until all operations of the current job 

are selected, then go to Step 8; 

Step 8: Go to step 2 until all jobs are all selected once. 

In 2007, J. Heinonen et al. [4] Manufacturing today is 

primarily cooked down to all-out efforts into profitability. 

Factories are moved to low-salary countries in order to ensure 

that profits are maintained and stockholders kept happy. 

Decisions like these are met with debates about moral, ethics 

and responsibilities that companies have to society, since 

losing an entire manufacturing plant can be devastating to a 

community. 

The algorithm consists of two parts. We have the ACO part, 

where ants crawl over the search space trying to construct a 

feasible tour. When all ants have constructed their tour, the 

timestamps are calculated for the individual operations in the 

schedule defined by a tour, which allows us to calculate the 

makespan. The postprocessing part springs to life when there 

is a schedule to operate on. The pheromone update of the 

ACO occurs only after the postprocessing has finished, this is 

due to the postprocessing affecting the makespan of the 

schedule formed by the tour of the ant. After the pheromone 

update ACO continues with the next iteration. 

ACO 

ACO belongs to the class metaheuristics. The term 

metaheuristic is derived from two greek words, heuristic 

which means „„to find‟‟ and the prefix meta, which means 

„„beyond, in the sense of an upper level‟‟. It has come to mean 

a high-level strategy for guiding heuristics in a search for 

feasible solutions as well as a framework that can be 

specialized to solve optimization problems. ACO is also a 

successful example of swarm intelligence, whose purpose is to 

design intelligent multi-agent systems by taking inspirations 

from the collective behaviour of social insects. 

The inspiration for ACO is the behaviour of foraging ants. 

Ants in nature are capable of finding the shortest path from 

the nest to a food source without a visual cue. The information 

concerning food is communicated through an aromatic 

essence, called pheromone by a process called stigmergy, 
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which means modification of the environment. A pheromone 

is any chemical or set of chemicals produced by a living 

organism that transmits a message to other members of the 

same species. There are alarm pheromones, food trail 

pheromones and others that affect behavior or physiology. 

Pheromone is volatile and evaporates quickly, otherwise 

nature would be swamped with pheromone scent deposited 

there during the years. Ant secrete this pheromone while 

walking and follow, in turn, other pheromone trails laid by 

other ants, previously passing through that trail. A strong 

pheromone concentration on a path stimulate the ants to move 

in that direction. While ants passing through a food source by 

using a shorter path return to the nest faster than ants taking a 

longer route, the quantity of pheromone laid down on the 

shorter path grows faster than on the longer ones, and cause 

any single ant to bias toward the shorter path. Occasionally 

there will be the stray ant that takes the longer route, and there 

can be seen ants that explore other routes to the food and back 

to the nest as well. The choice of path seems almost 

probabilistic in nature. 

 
 

In 2008, F. Pezzella et al. [5] GA is a local search algorithm 

that follows the evolution paradigm. Starting from an initial 

population, the algorithm applies genetic operators in order to 

produce offsprings (in the local search terminology, it 

corresponds to exploring the neighborhood), which are 

presumably more fit than their ancestors. At each generation 

(iteration), every new individual (chromosome) corresponds 

to a solution, i.e., a schedule of the given FJSP instance. The 

strength of GA with respect to other local search algorithms is 

due to the fact that in a GA framework more strategies can be 

adopted together to find individuals to add to the mating pool, 

both in the initial population phase and in the dynamic 

generation phase. 

Then, a more variable search space can be explored at each 

algorithm step. The overall structure of our GA can be 

described as follows: 

1. Coding: The genes of the chromosomes describe the 

assignment of operations to the machines, and the order in 

which they appear in the chromosome describes the sequence 

of operations. Each chromosome represents a solution for the 

problem. 

2. Initial population: The initial chromosomes are obtained by 

a mix of two assignment procedures (global minimum and 

random permutation of jobs and machines) and a mix of three 

dispatching rules (Random, MWR, MOR) for sequencing. 

3. Fitness evaluation: The makespan is computed for each 

chromosome in the current generation.  

4. Selection: At each iteration, the best chromosomes are 

chosen for reproduction by one among three different 

methods, i.e., binary tournament, n-size tournament and linear 

ranking. 

5. Offspring generation: The new generation is obtained by 

changing the assignment of the operations to the machines 

(assignment crossover, assignment mutation, intelligent 

mutation) and by changing the sequencing of operations 

(POXcrossover and PPS mutation). These rules preserve 

feasibility of new individuals. Newindividuals are generated 

until a fixed maximum number of individuals is reached. In 

our approach, only the new individuals form the mating pool 

for the next generation, at each algorithm step. 

6. Stop criterion: Fixed number of generations is reached. If 

the stop criterion is satisfied, the algorithm ends and the best 

chromosome, together with the corresponding schedule, is 

given as output. Otherwise, the algorithm iterates 

again steps 3–5. 

 
In 2010, Eugene Levner et al. [6] Cyclic (periodic) 

scheduling is an effective way to process various 

manufacturing, computing, and transportation processes, 

including those where setup and transportation times are 

significant. Traditionally, periodic scheduling problems in 

flexible manufacturing systems have been considered 

separately in two environments, namely the jobshop and the 

PERT-shop. The cyclic jobshop has two important special 

cases: the cyclic flowshop and the cyclic robotic shop (these 

terms will be explained below). In the traditional jobshop 

environment, setup and transportation times are usually 

assumed to be insignificant. For instance, modern machining 

centres can switch tools quickly so the setup times in such a 

situation may be small or negligible. 

 
In 2011, Liang Gao et al. [7] In this research, the JSP consists 

of a set of jobs Job = {J1, J2, . . . , Jn} and a set of machines 

Machine = {M1, M2, . . . , Mm}. The objective is to minimize 

the makespan, i.e., the completion time of the last job being 

completed in the system. In the JSP, several constraints and 

assumptions are made as follows: 

– Each machine could process at most one job at a time. 

–  Each job is only processed by one machine at a time. 

– The sequence of machines which a job visits is completely 

fixed and has a linear precedence structure. 

– All jobs must be processed by each machine only once and 

there are at most m operations for a job. 

– There are no precedence constraints among the operations of 

different jobs. 

– The machines are always available at zero and never break 

down. 

– Processing time of all operations is known. 

 

Job shop scheduling with memetic algorithm 

MA could well balance its diversification and intensification 

to find high quality solutions of the optimization problem. 
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Diversifi Diversification is a search of different areas of the 

search space to find the most promising regions. 

Intensification is a search of the neighborhoods of the 

individuals to produce better solutions (Ong & Keane, 2004). 

In the proposed MA, the local search procedure is applied to 

each child to search for a better solution. The flowchart of the 

proposed MA in this paper is shown in. 

 

Step 1: Generate initial population. Set parameters of GA 

including population size, max iteration, mutation probability, 

crossover probability, etc. Then encode an initial solution into 

a chromosome. Repeat this step until the number of individual 

equals to the population size. 

Step 2: Apply the local search procedure to improve the 

quality of each individual. 

Step 3: Decode each individual of population to obtain the 

makespan corresponding with each individual. And compare 

them to obtain the best solution. 

Step 4: Check the termination criteria. If one of the criteria is 

satisfied, then stop the algorithm and output the best solution; 

otherwise, go to step 5. 

Step 5: Generate new population for the next generation. 

Genetic evolution with three operators including selection, 

crossover and mutation is applied to create offspring for the 

next population. Following this, the algorithm goes back to 

step 2. 

 

 

In 2011, xiao-yuan wang et al. [8] There are n jobs J1, J2, . . . 

, Jn to be processed successively onmmachinesM1, M2, . . . 

,Mm in that order. Each job can be processed on no more than 

one machine at any time, while each machine can handle only 

one job at a time and the processing of a job may not be 

interrupted. All the jobs are available for processing at time 0. 

The operation of job Jj on machine Mi is denoted by Tij. 

Following Ho et al. (1993), Wang and Xia (2005), and Wang 

(2007), we assume that the processing time of operation Tij is 

given by 

 

Pij(t) = aij (1-bt) (i=1,2..,m; j=1,2..,n). 

 

where aij > 0 denotes the normal processing time of operation 

Tij, t is its starting time. It is assumed that b satisfies the 

following condition: 

 
 

The first condition ensures that the decrease in processing 

time of each job is less than one unit for every unit of delay in 

its starting moment. The second condition ensures that all the 

job processing times are positive in a feasible schedule (see 

also Ho et al. (1993), & Wang & Xia (2005) for detailed 

explanations).  

All jobs have the same processing order through the machines 

and are available for processing at time t0 ≥ 0. Let Cij denote 

the completion time of job Jj on machine Mi in a given 

permutation. The objective is to minimize the makespan Cmax 

= maxij{ Cij},i = 1,2,. . . ,m, j = 1,2,. . . ,n, i.e., the maximum 

of the completion time of all operations. We assume unlimited 

intermediate storage between successive machines for the 

general flow shop scheduling problem. We also restrict 

ourselves to permutation schedules only. Using the threefield 

notation for scheduling problem classification, the problem 

can be represented as Fmj│pij(t) = aij(1- bt)jCmax. Let π = ([1], 

[2] , . . . , [n]) be a permutation of (1, 2, . . . ,n), where [j] = I 

means job Ji is the jth one to be processed. 

 
In 2011, leila asadzadeh et al. [9] We proposed an agent-

based parallel approach for the job shop scheduling problem. 

In that model, we developed a multi-agent system containing 

some agents with special actions that are used to parallelize 

the genetic algorithm and create its population. We used 

JADE middleware to implement our multi-agent system. 

Agents distributed over various hosts in network and JADE 

provides a secure communication channel for them to 

communicate. In this model, each agent has been developed 

for a special purpose. We can describe them as follow: 

• MA (Management Agent): MA and Ai (i=1,2,...,m) agents 

have the responsibility of creating the initial population for the 

genetic algorithm. This agent controls the behaviors of Ais 

and coordinates them in creation step. 

• Ai (Execute Agent): Each machine has an Ai agent to 

schedule the operations on it. 

• PA (Processor Agent): Each PA locates on a distinct host 

and executes genetic algorithm on its sub-population. 
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• SA (Synchronization Agent): This agent locates on main host 

and coordinates migration between sub-populations of PA 

agents. 

 

In that model, the genetic population is created 

serially by MA and Ai (i=1,2,...,m) agents. The sub-

populations of PA agents are determined and sent to them by 

MA. One disadvantage of this model is the lack of load 

balancing on the network hosts. On the other hand, the main 

host that locates the MA, Ai and SA agents is the bottleneck of 

system and if it crash, the whole multi-agent system will be 

stopped working.  

To solve this problem and improve the performance 

of creating the initial population, we can extend the model to 

create sub-populations in a parallel manner. An overall 

architecture of improved agent-based model has represented 

in FIGURE. In this model, each host has one MA and m Ai 

(i=1,2,7,m) agents. These agents have the responsibility of 

creating the subpopulation for their host‟s PA. 

To synchronize the various processor agents in 

migration phase, synchronization agent (SA) locates on main 

host and synchronizes them. Parallel creation of sub-

populations improves the speed and performance. On the 

other hand, the division of the population into several sub-

populations and sending them to PAs can be avoided. 

 
 

In 2010, Surekha P et al. [10]  Ant colonies exhibit very 

interesting behaviours, though one specific ant has limited 

capabilities, the behaviour of a whole ant colony is highly 

structured. They are capable of finding the shortest path from 

their nest to a food source, without using visual cues but by 

exploiting pheromone information. While walking, ants can 

deposit some pheromone on the path. The probability that the 

ants coming later choose the path is proportional to the 

amount of pheromone on the path, previously deposited by 

other ants. This theory was the basis for forming the Ant 

Colony Optimization (ACO) algorithm using artificial ants. 

The artificial ants are designed based on the behavior of real 

ants. They lay pheromone trails on the graph edges and 

choose their path with respect to probabilities that depend on 

pheromone trails and these pheromone trails decrease 

progressively by evaporation.  

At the end of each generation, each ant present in the 

population spawns a complete tour traversing all the nodes 

based on a probabilistic state transition rule. The nodes are 

chosen by the ants based on the order in which they appear in 

the permutation process. The node selection process involves 

a heuristic factor as well as a pheromone factor used by the 

ants. The heuristic factor, denoted by η
ij
, and the pheromone 

factor, denoted by τij, are indicators of how good it seems to 

have node j at node i of the permutation. The heuristic value is 

generated by some problem dependent heuristics whereas the 

pheromone factor stems from former ants that have found 

good solution. The next node is chosen by an ant according to 

the following rule that has been called pseudo random 

proportional action choice rule. With probability q
0
, where 0≤ 

q
0
<I is a parameter of the algorithm, the ant chooses a node 

from the set of nodes (s) that have not been selected so for 

which maximizes (τij)
α
 (ηij)

β
 , where α≥0 and β≥0 are 

constants that determine the relative influence of the 

pheromone values and the heuristic values on the decision of 

the ant. The probability of choosing the next node is chosen 

from the set S according to the probability distribution given 

by:  

 

 

This probability also known as the transition probability is a 

trade-off between the pheromone factor and the heuristic 

factor. The heuristic factor is computed as  

, where F(X) represents the cost function of 

X. While constructing its tour, an ant will modify the amount 

of pheromone on the passed edges by applying the local 

updating rule , where τij  (t) is the amount 

of pheromone on the edge (i, j) at time t; ρ is a parameter 

governing pheromone decay such that 0 < ρ < 1; and τ0 is the 

initial value of pheromone on all edges. Once all ants have 

arrived at their destination, the amount of pheromone on the 

edge is modified again by applying the global updating rule  

, where if this is the best 

tour, otherwise Δ τij (t) =0, and L indicates the length of the 

globally best tour. The pheromone updating rule was meant to 

simulate the change in the amount of pheromone due to both 

the addition of new pheromone deposited by ants on the 

visited edges and to pheromone evaporation. The algorithm 

stops iterating either when an ant found a solution or when a 

maximum number of generations have been performed.  
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In 2010, Tamer F. Abdelmaguid et al. [11]  In GA, the 

reproduction operator can be seen as an approach for 

conducting neighborhood search; while, mutation operator 

provides a mechanism to avoid being trapped in a local 

optima. The design of both operators is crucial for the success 

of GA. In the literature, the reproduction and mutation 

operators applied to the JSP are mainly adopted from the 

literature of applying GA to the traveling salesman problem 

(TSP). This adoption is motivated by the similarity between 

the GA representations used for the JSP and the permutation 

representation used to encode the sequence of visited cities. 

Among the reproduction operators used in the JSP 

literature are the partial-mapped crossover (PMX), the order 

crossover (OX) and the uniform or position- based crossover. 

For both PMX and OX, there are two versions, one in which 

there are a single crossover point and another one in which 

there are two crossover points.  

The mutation operators used for the JSP implement 

different mechanisms to exchange the values assigned to 

randomly selected genes in a given chromosome. Swap 

mutation, also known as reciprocal exchange mutation, simply 

exchanges the values assigned to two different randomly 

selected genes. Inversion mutation, inverts the order of the 

values assigned to the set of genes located between two 

randomly selected positions in the chromosome. Insertion or 

shift mutation selects a gene randomly and sets its value to 

another randomly selected gene, while the values of the genes 

between these randomly selected positions are shifted. The 

displacement mutation is another version of shift mutation in 

which a substring of genes, instead of a single gene, is moved 

to a randomly selected new location. Gen and Cheng provide 

a detailed description of the implementation of the 

reproduction and mutation operators used in this study. 

In 2007, milos seda et al. [12] Flow shop scheduling is one of 

the most important problems in the area of production 

management. It can be briefly described as follows: There are 

a set of m machines (processors) and a set of n jobs. Each job 

comprises a set of m operations which must be done on 

different machines. All jobs have the same processing 

operation order when passing through the machines. There are 

no precedence constraints among operations of different jobs. 

Operations cannot be interrupted and each machine can 

process only one operation at a time. The problem is to find 

the job sequences on the machines which minimise the 

makespan, i.e. the maximum of the completion times of all 

operations. As the objective function, mean flowtime, 

completion time variance [9] and total tardiness [20] can also 

be used. The flow shop scheduling problem is NP-complete 

and thus it is usually solved by approximation or heuristic 

methods. The use of simulated annealing is presented, e.g., 

tabu search and genetic algorithms. In a deterministic heuristic 

is proposed that determines the order of any two jobs in the 

final schedule based on their order in all two-machine 

problems embedded in the problem. 

 

 

 

In 2013, Sureshkumar et al. [13] The objective of proposed 

scheme is to solve a job shop scheduling problem to minimize 

the makespan time. In order to solve a JSSP artificial 

intelligence technique genetic algorithm (GA) is used. The 

genetic algorithm is a probabilistic Meta heuristic technique, 

which is used to solve optimization problems. They are based 

on the genetic process of chromosome. Over many 

generations, natural population evolves according to the 

principles of natural selection that is survival of the fittest. It 

starts with the initial solution called population and it is filled 

with chromosome. Each element in chromosome is called 

gene. Job is represented by each gene in chromosome and the 

job sequence in a schedule based on the position of the gene. 

In our proposed algorithm unordered subsequence exchange 

crossover (USXX) and shift change Mutation is used. 

In 2012, James C. Chen et al .[14] The proposed algorithm is 

developed in two major modules. Grouping Genetic 

Algorithm (GGA) is applied to develop machine selection 
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module (MSM) to assign operations to machines. Then 

Genetic Algorithm (GA) is used to develop operation 

scheduling module (OSM) to determine the processing 

sequence of operations on machines. The objectives of the 

proposed algorithm are the minimization of multiple 

performance measures including makespan, total tardiness, 

and total machine idle time. This paper is organized as 

follows. This section gives an introduction to this research. 

The next section reviews relevant literature. Section 3 

describes the parameters setting for GA and GGA and the 

detailed procedure of the proposed algorithm. Next, Section 4 

presents a case study in a real weapon production factory 

using the proposed algorithm. Section 5 shows the results and 

discussion. Finally, Section 6 draws conclusions and gives 

directions of future work.   

 

 

In 2011, DarrellLochtefeld et al. [15]  There are several types 

of EAs including Genetic Algorithms (GAs). GAs model 

„survival of the fittest‟ in order to solve optimization 

problems. GAs manage a collection of solutions called a 

population. Individuals represent possible solutions to the 

optimization problem. Several operators are used on one or 

more solutions to model survival of the fittest. Individuals are 

created through the processes of recombination which models 

the mating of solutions to produce offspring. Offspring 

compete for a spot in the population through survival selection 

and are selected to become parents through the process of 

parent selection. Finally the process of mutation mimics 

random changes that can occur in nature.  

Multi-objective problems have incomparable and 

often conflicting objective functions. For example, in a 

factory setting it is often important to both maximize safety 

and minimize cost. Unless safety levels are translated into a 

cost by a decision maker, there is rarely a single best solution 

to the problem. As a result, multiple-objective problems have 

a multi-dimensional objective space. Even in such a problem 

space, a rational decision maker would only select a course of 

action from a subset of possible solutions. A solution may 

dominate another solution if that solution is better in at least 

one objective and no worse in all others. Conversely, two 

solutions can be incomparable in the Pareto sense if each 

solution has at least one objective value that is better than the 

other solution. Since a rational decision maker would only 

pick non-dominated solutions, finding these solutions is the 

goal of multi-objective optimization. All solutions that are 

non-dominated by other solutions are also called Pareto 

efficient solutions.  

The process of solving multiple objective problems 

with EAs is known as Evolutionary Multi-objective 

Optimization (EMO). MOEAs are the algorithms that perform 

such optimization. These algorithmsmanage the evolutionary 

process in a way that produces good and diverse solutions, 

with a goal of finding diverse solutions on the Pareto efficient 

frontier. Such methods must balance solution diversity with 

fitness improvements in two or more objectives. 

Typically these methods modify the selection of solutions 

based on Pareto dominance relationships, either through 

dividing the search hyperspace into hypercubes, or through 

the direct dominance comparison of solutions in the 

population. MOEAs are designed to work with multiple 

objectives making them capable of handling multi-

objectivization techniques. The reader is referred to for a 

complete description of EAs. See also for a more complete 

description of multi-objective problems, Pareto concepts, and 

an overview of various types of MOE As.  

Multi-objectivization is a term originally coined by 

Knowles et al. The term describes the process of 

reformulating a single objective problem into a multiple-

objective problem and then solving it with amultiple objective 

method. There are two types of multi-objectivization methods: 

those that decompose the original objective into smaller 

objectives, and those that use new objectives that were not 

components to the main objective function. Knowles et al. 

studied hill-climbers in solving a Traveling Salesman Problem 

(TSP). The original objective was divided into two sub-

objectives where the sum of the two sub-objectives equals the 

original objective. The multiple-objective hill-climbers 

wereshownto outperform their single-objective hill-climber 

counterparts. Since the sub-objectives may contain local 

minima and maxima and those minima and maxima do not 

always correspond to the global minima and maxima, local 

minima can be overcome by the multiple-objective hill-

climber through picking between solutions in either sub-

objective space.  

Multi-objectivization is a divide-and-conquer method 

where a problem is sliced into one or more search spaces. The 

concept of optimizing a problem through divide-and-conquer 

techniques is not new. For example, branch-and-bound 

techniques have been used formally for over half a century in 

both integer and mixed-integer programming problems. Multi-

objectivization by decomposition differs from many past 

divide-and-conquer methods in that multi-objectivization by 

decomposition explicitly divides problem objective(s) rather 

than explicitly dividing the problem search space.  

Multi-objectivization has been examined in various 

areas. Abbass and Deb [10] studied multi-objectivization by 

adding solution age as an additional objective where solutions 

were given a birth rank based upon the generation in which 

they were created.  
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III. CONCLUSION 

This paper presents a novel knowledge-based 

approach for the job shop scheduling problem (JSSP) by 

utilizing the various constituents of the computational 

intelligence techniques such as Genetic Algorithm (GA), Ant 

Colony Optimization (ACO) and Particle Swarm 

Optimization (PSO). This research focused primarily on 

discovering new approaches that can match the computational 

intelligence techniques in solving Job Shop Scheduling 

problems. Significant improvements can be made by 

modifying the goals of this paper and adopting techniques to 

extend the knowledge of job shop scheduling problems. The 

research dealt specifically with the classical 10x10 job shop 

scheduling problem with the objective of minimizing the 

makespan 
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