
Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 86

Review Study to Minimize the Make Span Time

for Job Shop Scheduling of Manufacturing Industry

by Different Optimization Method

Vineet Kumar
1
, Dr. Om Pal Singh

2

1
 Research Scholar, PTU, Jalandhar

2
 Professor, Mechanical Engineering Department. BCET, Gurdaspur

Abstract: - Scheduling is one of the most important issues in the

planning and operation of manufacturing system, and scheduling

has gained much attention increasingly in the recent years. The

flexible job shop scheduling problem (JSP) is one of the most

difficult problems in this area. It consists of scheduling a set of

jobs on a set of machines with the objective to minimize a certain

make span time. Each machine is continuously available from

time zero, processing one operation at a time without

preemption. Each job has a specified processing order on the

machine which are fixed and known in advance. Moreover, a

processing time is also fixed and known. Different researcher use

different algorithms to optimize the make span time. In this

paper study has been focused on the different algorithms to

optimize the make span time. Now a day’s different algorithms

that are used are Genetic Algorithm, Artificial Neural Network,

Ant Colony Optimization and Particle Swarm Optimization.

Keywords: Genetic Algorithm (GA), Ant Colony Optimization

(ACO), Particle Swarm Optimization (PSO), Job Shop

Scheduling (JSS), Make Span Time.

I. INTRODUCTION

he job shop scheduling problem is to decide a schedule of

jobs that is endowed with pre-set operation series in a

multi-machine atmosphere. In the traditional job shop

scheduling problem (JSP), n-jobs are processed to the

finishing point on m-unrelated machines. For each and every

task, technology limitations spell out an absolute and

distinctive routing which is set and identified earlier. In

addition, processing periods are set and identified previously.

This synopsis deals with the situations in which the

effectiveness measure (time, cost, distance, etc.) is a function

of the order or schedule of performing a series of jobs (tasks).

The selection of the appropriate order in which waiting

customers may be served is called scheduling. Scheduling

problems can be classified in two groups:

1. In the first group, there are n jobs to be performed, where

each job requires processing on some or all of m different

machines. The order in which these machines are to be used

for processing each job as well as the expected or actual

processing time of each job on each of the machines is known.

We can also measure the effectiveness for any given schedule

of jobs at each of the machines and we wish to select from the

(n!)
m
 theoretically feasible alternativeness measure(e.g.,

minimizes the total elapsed time from the start of the first job

to the completion of the last job as well as idle time of

machines). A technologically feasible sequence is one which

satisfies the constraints (if any) on the order in which each job

must be performed through the m machines. The technology

of manufacturing processes renders many schedules

technologically infeasible. For example, a part must be

degreased before it is painted; similarly, a hole must be drilled

before it is threaded.

Although, theoretically, it is always possible to select the best

schedule by testing each one; in practice, it is impossible

because of the large number of computations involved. For

example, if there are 4 jobs to be processed at each of the 5

machines (i.e., n=4 and m=5), the total number of

theoretically possible different schedules will be (4!)
5

=

7,962,624. Of course, as already said, some of them may not

be feasible because the required operations must be performed

in a specified order. Obviously, any technique which helps us

arrive at an optimal (or at least approximately so) schedule

without trying all or most of the possibilities will be quite

valuable.

2. The second group of problems deals with job shops having

a number of machines and a list of tasks to be performed.

Each time a task is completed by a machine, the next task to

be started on it has got to be decided. Thus the list of tasks

will change as fresh orders are received.

Unfortunately, both types of problems are intrinsically

difficult. While solutions are possible for some simple cases

of the first type, only some empirical rules have been

developed for the second type till now.

In the scheduling problems, there are two or more customers

to be served (or jobs to be done) and one or more facilities

(machine) available for this purpose. We want to know when

each job is to begin and what its due date is. We also want to

know which facilities are required to be each job, in which

T

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 87

order these facilities are required and how long each operation

is to take.

Scheduling problems have been most commonly encountered

in production shops where different products are to be

processed over various combinations of machines.

However, scheduling problems can arise even where only one

service facility is involved, for example, a number of

programs waiting to get on a computer or a number of patients

waiting for a doctor.

A general scheduling problem may be defined as follows:

Let there be n jobs (1, 2, 3 ... n), each of which has to be

processed, one at a time, on each of m machines (A, B, C ...)

The order of processing each job through the machines is

given (for example, job 1 is processed on machines A, C, B,

in this order). Also, the time required for processing each job

on each machine is given. The problem is to find among (n!)
m

possible schedules, that technologically feasible schedule for

processing the jobs which gives the minimum total elapsed

time for all the jobs.

II. DIFFERENT OPTIMIZATION METHOD

In 2009, Parviz Fattahi et al. [1] The literature of FJSP is

considerably sparser than the literature of JSP. Bruker and

Schile were among the first to address this problem. They

developed a polynomial algorithm for solving the flexible job

shop problem with two jobs. For solving the realistic case

with more than two jobs, two types of approaches have been

used: hierarchical approaches and integrated approaches. In

hierarchical approaches assignment of operations to machines

and the sequencing of operations on the resources or machines

are treated separately, i.e. assignment and sequencing are

considered independently. In the integrated approaches,

assignment and sequencing are not differentiated. Hierarchical

approaches are based on the idea of decomposing the original

problem in order to reduce its complexity. This type of

approach is natural for FJSP since the routing and the

scheduling sub-problem can be separated. Brandimarte was

the first in applying this decomposition approach for the FJSP.

He solved the routing sub-problem using some existing

dispatching rules and then focused on the scheduling sub-

problem, which is solved using a tabu search heuristic. Saidi

and Fattahi presented a mathematical model and a tabu search

algorithm to solve the flexible job shop scheduling problem

with sequence-dependent setups. They used a hierarchical

approach with two heuristic to solve this problem. The first

one for assigning each operation to a machine out of a set of

capable machines and the second one for sequencing the

assigned operations on all machines in order to obtain a

feasible schedule minimizing the Makespan. Another work in

this field was represented by Kacem et al. and Xia and Wu.

Integrated approaches were used by considering assignment

scheduling at the same time. Hurink et al. proposed a tabu

search heuristic in which reassignment and rescheduling are

considered as two different types of moves. The integrated

approach which had been represented by Dauzere-Peres and

Paulli was defined a neighborhood structure for the problem

where there was no distinction between reassigning and

resequencing an operation. Mastrololli and Gambardella

improved Dauzere-Peres tabu search techniques and presented

two neighborhood functions.

This paper considers flexible jobs scheduling problem with

overlapping in operations. Since the problem is well known as

NP-Hard class, a simulated annealing algorithm is developed

to solve large scale problems. Moreover, a mixed integer

linear

programming (MILP) method is presented to validate the

proposed algorithm. The approach is tested on a set of random

generated test problems to evaluate the behaviour of the

proposed algorithm. The reminder of this paper is organized

as follows: Section 2 describes the problem under

consideration and presents a mixed integer linear

programming model. The solution procedure and hierarchical

approach are presented in Section 3. Section 4 presents

numerical experiments and discussion. Section 5 includes

concluding remarks.

In 2012, D. Prot et al. [2] The tabu search (see Glover &

Laguna, 1997) is based on a neighborhood search procedure

to iteratively move from a current solution s to a solution s‟ in

the neigborhood N(s) of s until some stopping criterion. In the

current study, a solution is represented by a priority list L that

contains each operation to schedule with an associate given

mode. A direct neighbor then corresponds to a list L0 that can

be obtained by doing only one change in the list L. At the first

iteration of the search, the first priority list is built using one

of the priority rules presented before. Once a list is fixed, the

corresponding schedule can be built either using the Semi

Active SGS or the NonDelaySGS1. So, we propose two

different versions of the tabu search, that we will compare in

the final results (see Section 7). This approach is motivated by

the fact that, given a priority list, the two SGS do not have the

same behavior, and it is easier to manually guide solutions

obtained by SemiActiveSGS since the operation order on each

machine is exactly the same as in the priority list. However,

NonDelaySGS1 implicitly tries to reduce setup times and

hence may obtain better results.

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 88

In 2011, Guohui Zhang et al. [3] The advantage of GA with

respect to other local search algorithms is due to the fact that

more strategies could be adopted together to find good

individuals to add to the mating pool in a GA framework, both

in the initial population phase and in the dynamic generation

phase (Pezzella et al., 2007). In this paper, the proposed GA

adopts an improved chromosome representation and a novel

initialization approach, which can balance the workload of the

machines well and converge to suboptimal solution in short

time.

Chromosome representation

Better efficiency of GA-based search could be achieved by

modifying the chromosome representation and its related

operators so as to generate feasible solutions and avoid repair

mechanism. Ho et al. (2007) developed extensive review and

investigated insightfully on chromosome representation of

FJSP. Mesghouni, Hammadi, and Borne (1997) proposed

parallel job representation for solving the FJSP. The

chromosome is represented by a matrix where each row is an

ordered sequence of each job. Each element of the row

contains two terms, the first one is the machine processing the

operation, and the second one is the starting time of this

operation.

Population initialization is a crucial task in evolutionary

algorithms because it can affect the convergence speed and

the quality of the final solution (Shahryar, Hamid, & Magdy,

2007). In this section, we mainly present two methods to solve

the first sub-problem through assigning each operation to the

suitable machine. These methods take into account both the

processing time and the workload of the machines.

Global Selection (GS)

We define that a stage is the process of selecting a suitable

machine for an operation. Thus this method records the sum

of the processing time of each machine in the whole

processing stage. Then the machine which has the minimum

processing time in every stage is selected. In particular, the

first job and next job are randomly selected. Detailed steps are

as follows:

Step 1: Create a new array to record all machines‟ processing

time, initialize each element to 0;

Step 2: Select a job randomly and insure one job to be

selected only once, then select the first operation of the job;

Step 3: Add the processing time of each machine in the

available machines and the corresponding machine‟s time in

the time array together;

Step 4: Compare the added time to find the shortest time, then

select the index k of the machine which has the shortest time.

If there is the same time among different machines, a machine

is selected randomly among them;

Step 5: Set the allele which corresponds to the current

operation in the MS part to k;

Step 6: Add the current selected machine‟s processing time

and its corresponding allele in the time array together in order

to update the time array;

Step 7: Select the next operation of the current job, and

execute Step 3 to Step 6 until all operations of the current job

are selected, then go to Step 8;

Step 8: Go to step 2 until all jobs are all selected once.

In 2007, J. Heinonen et al. [4] Manufacturing today is

primarily cooked down to all-out efforts into profitability.

Factories are moved to low-salary countries in order to ensure

that profits are maintained and stockholders kept happy.

Decisions like these are met with debates about moral, ethics

and responsibilities that companies have to society, since

losing an entire manufacturing plant can be devastating to a

community.

The algorithm consists of two parts. We have the ACO part,

where ants crawl over the search space trying to construct a

feasible tour. When all ants have constructed their tour, the

timestamps are calculated for the individual operations in the

schedule defined by a tour, which allows us to calculate the

makespan. The postprocessing part springs to life when there

is a schedule to operate on. The pheromone update of the

ACO occurs only after the postprocessing has finished, this is

due to the postprocessing affecting the makespan of the

schedule formed by the tour of the ant. After the pheromone

update ACO continues with the next iteration.

ACO

ACO belongs to the class metaheuristics. The term

metaheuristic is derived from two greek words, heuristic

which means „„to find‟‟ and the prefix meta, which means

„„beyond, in the sense of an upper level‟‟. It has come to mean

a high-level strategy for guiding heuristics in a search for

feasible solutions as well as a framework that can be

specialized to solve optimization problems. ACO is also a

successful example of swarm intelligence, whose purpose is to

design intelligent multi-agent systems by taking inspirations

from the collective behaviour of social insects.

The inspiration for ACO is the behaviour of foraging ants.

Ants in nature are capable of finding the shortest path from

the nest to a food source without a visual cue. The information

concerning food is communicated through an aromatic

essence, called pheromone by a process called stigmergy,

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 89

which means modification of the environment. A pheromone

is any chemical or set of chemicals produced by a living

organism that transmits a message to other members of the

same species. There are alarm pheromones, food trail

pheromones and others that affect behavior or physiology.

Pheromone is volatile and evaporates quickly, otherwise

nature would be swamped with pheromone scent deposited

there during the years. Ant secrete this pheromone while

walking and follow, in turn, other pheromone trails laid by

other ants, previously passing through that trail. A strong

pheromone concentration on a path stimulate the ants to move

in that direction. While ants passing through a food source by

using a shorter path return to the nest faster than ants taking a

longer route, the quantity of pheromone laid down on the

shorter path grows faster than on the longer ones, and cause

any single ant to bias toward the shorter path. Occasionally

there will be the stray ant that takes the longer route, and there

can be seen ants that explore other routes to the food and back

to the nest as well. The choice of path seems almost

probabilistic in nature.

In 2008, F. Pezzella et al. [5] GA is a local search algorithm

that follows the evolution paradigm. Starting from an initial

population, the algorithm applies genetic operators in order to

produce offsprings (in the local search terminology, it

corresponds to exploring the neighborhood), which are

presumably more fit than their ancestors. At each generation

(iteration), every new individual (chromosome) corresponds

to a solution, i.e., a schedule of the given FJSP instance. The

strength of GA with respect to other local search algorithms is

due to the fact that in a GA framework more strategies can be

adopted together to find individuals to add to the mating pool,

both in the initial population phase and in the dynamic

generation phase.

Then, a more variable search space can be explored at each

algorithm step. The overall structure of our GA can be

described as follows:

1. Coding: The genes of the chromosomes describe the

assignment of operations to the machines, and the order in

which they appear in the chromosome describes the sequence

of operations. Each chromosome represents a solution for the

problem.

2. Initial population: The initial chromosomes are obtained by

a mix of two assignment procedures (global minimum and

random permutation of jobs and machines) and a mix of three

dispatching rules (Random, MWR, MOR) for sequencing.

3. Fitness evaluation: The makespan is computed for each

chromosome in the current generation.

4. Selection: At each iteration, the best chromosomes are

chosen for reproduction by one among three different

methods, i.e., binary tournament, n-size tournament and linear

ranking.

5. Offspring generation: The new generation is obtained by

changing the assignment of the operations to the machines

(assignment crossover, assignment mutation, intelligent

mutation) and by changing the sequencing of operations

(POXcrossover and PPS mutation). These rules preserve

feasibility of new individuals. Newindividuals are generated

until a fixed maximum number of individuals is reached. In

our approach, only the new individuals form the mating pool

for the next generation, at each algorithm step.

6. Stop criterion: Fixed number of generations is reached. If

the stop criterion is satisfied, the algorithm ends and the best

chromosome, together with the corresponding schedule, is

given as output. Otherwise, the algorithm iterates

again steps 3–5.

In 2010, Eugene Levner et al. [6] Cyclic (periodic)

scheduling is an effective way to process various

manufacturing, computing, and transportation processes,

including those where setup and transportation times are

significant. Traditionally, periodic scheduling problems in

flexible manufacturing systems have been considered

separately in two environments, namely the jobshop and the

PERT-shop. The cyclic jobshop has two important special

cases: the cyclic flowshop and the cyclic robotic shop (these

terms will be explained below). In the traditional jobshop

environment, setup and transportation times are usually

assumed to be insignificant. For instance, modern machining

centres can switch tools quickly so the setup times in such a

situation may be small or negligible.

In 2011, Liang Gao et al. [7] In this research, the JSP consists

of a set of jobs Job = {J1, J2, . . . , Jn} and a set of machines

Machine = {M1, M2, . . . , Mm}. The objective is to minimize

the makespan, i.e., the completion time of the last job being

completed in the system. In the JSP, several constraints and

assumptions are made as follows:

– Each machine could process at most one job at a time.

– Each job is only processed by one machine at a time.

– The sequence of machines which a job visits is completely

fixed and has a linear precedence structure.

– All jobs must be processed by each machine only once and

there are at most m operations for a job.

– There are no precedence constraints among the operations of

different jobs.

– The machines are always available at zero and never break

down.

– Processing time of all operations is known.

Job shop scheduling with memetic algorithm

MA could well balance its diversification and intensification

to find high quality solutions of the optimization problem.

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 90

Diversifi Diversification is a search of different areas of the

search space to find the most promising regions.

Intensification is a search of the neighborhoods of the

individuals to produce better solutions (Ong & Keane, 2004).

In the proposed MA, the local search procedure is applied to

each child to search for a better solution. The flowchart of the

proposed MA in this paper is shown in.

Step 1: Generate initial population. Set parameters of GA

including population size, max iteration, mutation probability,

crossover probability, etc. Then encode an initial solution into

a chromosome. Repeat this step until the number of individual

equals to the population size.

Step 2: Apply the local search procedure to improve the

quality of each individual.

Step 3: Decode each individual of population to obtain the

makespan corresponding with each individual. And compare

them to obtain the best solution.

Step 4: Check the termination criteria. If one of the criteria is

satisfied, then stop the algorithm and output the best solution;

otherwise, go to step 5.

Step 5: Generate new population for the next generation.

Genetic evolution with three operators including selection,

crossover and mutation is applied to create offspring for the

next population. Following this, the algorithm goes back to

step 2.

In 2011, xiao-yuan wang et al. [8] There are n jobs J1, J2, . . .

, Jn to be processed successively onmmachinesM1, M2, . . .

,Mm in that order. Each job can be processed on no more than

one machine at any time, while each machine can handle only

one job at a time and the processing of a job may not be

interrupted. All the jobs are available for processing at time 0.

The operation of job Jj on machine Mi is denoted by Tij.

Following Ho et al. (1993), Wang and Xia (2005), and Wang

(2007), we assume that the processing time of operation Tij is

given by

Pij(t) = aij (1-bt) (i=1,2..,m; j=1,2..,n).

where aij > 0 denotes the normal processing time of operation

Tij, t is its starting time. It is assumed that b satisfies the

following condition:

The first condition ensures that the decrease in processing

time of each job is less than one unit for every unit of delay in

its starting moment. The second condition ensures that all the

job processing times are positive in a feasible schedule (see

also Ho et al. (1993), & Wang & Xia (2005) for detailed

explanations).

All jobs have the same processing order through the machines

and are available for processing at time t0 ≥ 0. Let Cij denote

the completion time of job Jj on machine Mi in a given

permutation. The objective is to minimize the makespan Cmax

= maxij{ Cij},i = 1,2,. . . ,m, j = 1,2,. . . ,n, i.e., the maximum

of the completion time of all operations. We assume unlimited

intermediate storage between successive machines for the

general flow shop scheduling problem. We also restrict

ourselves to permutation schedules only. Using the threefield

notation for scheduling problem classification, the problem

can be represented as Fmj│pij(t) = aij(1- bt)jCmax. Let π = ([1],

[2] , . . . , [n]) be a permutation of (1, 2, . . . ,n), where [j] = I

means job Ji is the jth one to be processed.

In 2011, leila asadzadeh et al. [9] We proposed an agent-

based parallel approach for the job shop scheduling problem.

In that model, we developed a multi-agent system containing

some agents with special actions that are used to parallelize

the genetic algorithm and create its population. We used

JADE middleware to implement our multi-agent system.

Agents distributed over various hosts in network and JADE

provides a secure communication channel for them to

communicate. In this model, each agent has been developed

for a special purpose. We can describe them as follow:

• MA (Management Agent): MA and Ai (i=1,2,...,m) agents

have the responsibility of creating the initial population for the

genetic algorithm. This agent controls the behaviors of Ais

and coordinates them in creation step.

• Ai (Execute Agent): Each machine has an Ai agent to

schedule the operations on it.

• PA (Processor Agent): Each PA locates on a distinct host

and executes genetic algorithm on its sub-population.

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 91

• SA (Synchronization Agent): This agent locates on main host

and coordinates migration between sub-populations of PA

agents.

In that model, the genetic population is created

serially by MA and Ai (i=1,2,...,m) agents. The sub-

populations of PA agents are determined and sent to them by

MA. One disadvantage of this model is the lack of load

balancing on the network hosts. On the other hand, the main

host that locates the MA, Ai and SA agents is the bottleneck of

system and if it crash, the whole multi-agent system will be

stopped working.

To solve this problem and improve the performance

of creating the initial population, we can extend the model to

create sub-populations in a parallel manner. An overall

architecture of improved agent-based model has represented

in FIGURE. In this model, each host has one MA and m Ai

(i=1,2,7,m) agents. These agents have the responsibility of

creating the subpopulation for their host‟s PA.

To synchronize the various processor agents in

migration phase, synchronization agent (SA) locates on main

host and synchronizes them. Parallel creation of sub-

populations improves the speed and performance. On the

other hand, the division of the population into several sub-

populations and sending them to PAs can be avoided.

In 2010, Surekha P et al. [10] Ant colonies exhibit very

interesting behaviours, though one specific ant has limited

capabilities, the behaviour of a whole ant colony is highly

structured. They are capable of finding the shortest path from

their nest to a food source, without using visual cues but by

exploiting pheromone information. While walking, ants can

deposit some pheromone on the path. The probability that the

ants coming later choose the path is proportional to the

amount of pheromone on the path, previously deposited by

other ants. This theory was the basis for forming the Ant

Colony Optimization (ACO) algorithm using artificial ants.

The artificial ants are designed based on the behavior of real

ants. They lay pheromone trails on the graph edges and

choose their path with respect to probabilities that depend on

pheromone trails and these pheromone trails decrease

progressively by evaporation.

At the end of each generation, each ant present in the

population spawns a complete tour traversing all the nodes

based on a probabilistic state transition rule. The nodes are

chosen by the ants based on the order in which they appear in

the permutation process. The node selection process involves

a heuristic factor as well as a pheromone factor used by the

ants. The heuristic factor, denoted by η
ij
, and the pheromone

factor, denoted by τij, are indicators of how good it seems to

have node j at node i of the permutation. The heuristic value is

generated by some problem dependent heuristics whereas the

pheromone factor stems from former ants that have found

good solution. The next node is chosen by an ant according to

the following rule that has been called pseudo random

proportional action choice rule. With probability q
0
, where 0≤

q
0
<I is a parameter of the algorithm, the ant chooses a node

from the set of nodes (s) that have not been selected so for

which maximizes (τij)
α
 (ηij)

β
 , where α≥0 and β≥0 are

constants that determine the relative influence of the

pheromone values and the heuristic values on the decision of

the ant. The probability of choosing the next node is chosen

from the set S according to the probability distribution given

by:

This probability also known as the transition probability is a

trade-off between the pheromone factor and the heuristic

factor. The heuristic factor is computed as

, where F(X) represents the cost function of

X. While constructing its tour, an ant will modify the amount

of pheromone on the passed edges by applying the local

updating rule , where τij (t) is the amount

of pheromone on the edge (i, j) at time t; ρ is a parameter

governing pheromone decay such that 0 < ρ < 1; and τ0 is the

initial value of pheromone on all edges. Once all ants have

arrived at their destination, the amount of pheromone on the

edge is modified again by applying the global updating rule

, where if this is the best

tour, otherwise Δ τij (t) =0, and L indicates the length of the

globally best tour. The pheromone updating rule was meant to

simulate the change in the amount of pheromone due to both

the addition of new pheromone deposited by ants on the

visited edges and to pheromone evaporation. The algorithm

stops iterating either when an ant found a solution or when a

maximum number of generations have been performed.

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 92

In 2010, Tamer F. Abdelmaguid et al. [11] In GA, the

reproduction operator can be seen as an approach for

conducting neighborhood search; while, mutation operator

provides a mechanism to avoid being trapped in a local

optima. The design of both operators is crucial for the success

of GA. In the literature, the reproduction and mutation

operators applied to the JSP are mainly adopted from the

literature of applying GA to the traveling salesman problem

(TSP). This adoption is motivated by the similarity between

the GA representations used for the JSP and the permutation

representation used to encode the sequence of visited cities.

Among the reproduction operators used in the JSP

literature are the partial-mapped crossover (PMX), the order

crossover (OX) and the uniform or position- based crossover.

For both PMX and OX, there are two versions, one in which

there are a single crossover point and another one in which

there are two crossover points.

The mutation operators used for the JSP implement

different mechanisms to exchange the values assigned to

randomly selected genes in a given chromosome. Swap

mutation, also known as reciprocal exchange mutation, simply

exchanges the values assigned to two different randomly

selected genes. Inversion mutation, inverts the order of the

values assigned to the set of genes located between two

randomly selected positions in the chromosome. Insertion or

shift mutation selects a gene randomly and sets its value to

another randomly selected gene, while the values of the genes

between these randomly selected positions are shifted. The

displacement mutation is another version of shift mutation in

which a substring of genes, instead of a single gene, is moved

to a randomly selected new location. Gen and Cheng provide

a detailed description of the implementation of the

reproduction and mutation operators used in this study.

In 2007, milos seda et al. [12] Flow shop scheduling is one of

the most important problems in the area of production

management. It can be briefly described as follows: There are

a set of m machines (processors) and a set of n jobs. Each job

comprises a set of m operations which must be done on

different machines. All jobs have the same processing

operation order when passing through the machines. There are

no precedence constraints among operations of different jobs.

Operations cannot be interrupted and each machine can

process only one operation at a time. The problem is to find

the job sequences on the machines which minimise the

makespan, i.e. the maximum of the completion times of all

operations. As the objective function, mean flowtime,

completion time variance [9] and total tardiness [20] can also

be used. The flow shop scheduling problem is NP-complete

and thus it is usually solved by approximation or heuristic

methods. The use of simulated annealing is presented, e.g.,

tabu search and genetic algorithms. In a deterministic heuristic

is proposed that determines the order of any two jobs in the

final schedule based on their order in all two-machine

problems embedded in the problem.

In 2013, Sureshkumar et al. [13] The objective of proposed

scheme is to solve a job shop scheduling problem to minimize

the makespan time. In order to solve a JSSP artificial

intelligence technique genetic algorithm (GA) is used. The

genetic algorithm is a probabilistic Meta heuristic technique,

which is used to solve optimization problems. They are based

on the genetic process of chromosome. Over many

generations, natural population evolves according to the

principles of natural selection that is survival of the fittest. It

starts with the initial solution called population and it is filled

with chromosome. Each element in chromosome is called

gene. Job is represented by each gene in chromosome and the

job sequence in a schedule based on the position of the gene.

In our proposed algorithm unordered subsequence exchange

crossover (USXX) and shift change Mutation is used.

In 2012, James C. Chen et al .[14] The proposed algorithm is

developed in two major modules. Grouping Genetic

Algorithm (GGA) is applied to develop machine selection

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 93

module (MSM) to assign operations to machines. Then

Genetic Algorithm (GA) is used to develop operation

scheduling module (OSM) to determine the processing

sequence of operations on machines. The objectives of the

proposed algorithm are the minimization of multiple

performance measures including makespan, total tardiness,

and total machine idle time. This paper is organized as

follows. This section gives an introduction to this research.

The next section reviews relevant literature. Section 3

describes the parameters setting for GA and GGA and the

detailed procedure of the proposed algorithm. Next, Section 4

presents a case study in a real weapon production factory

using the proposed algorithm. Section 5 shows the results and

discussion. Finally, Section 6 draws conclusions and gives

directions of future work.

In 2011, DarrellLochtefeld et al. [15] There are several types

of EAs including Genetic Algorithms (GAs). GAs model

„survival of the fittest‟ in order to solve optimization

problems. GAs manage a collection of solutions called a

population. Individuals represent possible solutions to the

optimization problem. Several operators are used on one or

more solutions to model survival of the fittest. Individuals are

created through the processes of recombination which models

the mating of solutions to produce offspring. Offspring

compete for a spot in the population through survival selection

and are selected to become parents through the process of

parent selection. Finally the process of mutation mimics

random changes that can occur in nature.

Multi-objective problems have incomparable and

often conflicting objective functions. For example, in a

factory setting it is often important to both maximize safety

and minimize cost. Unless safety levels are translated into a

cost by a decision maker, there is rarely a single best solution

to the problem. As a result, multiple-objective problems have

a multi-dimensional objective space. Even in such a problem

space, a rational decision maker would only select a course of

action from a subset of possible solutions. A solution may

dominate another solution if that solution is better in at least

one objective and no worse in all others. Conversely, two

solutions can be incomparable in the Pareto sense if each

solution has at least one objective value that is better than the

other solution. Since a rational decision maker would only

pick non-dominated solutions, finding these solutions is the

goal of multi-objective optimization. All solutions that are

non-dominated by other solutions are also called Pareto

efficient solutions.

The process of solving multiple objective problems

with EAs is known as Evolutionary Multi-objective

Optimization (EMO). MOEAs are the algorithms that perform

such optimization. These algorithmsmanage the evolutionary

process in a way that produces good and diverse solutions,

with a goal of finding diverse solutions on the Pareto efficient

frontier. Such methods must balance solution diversity with

fitness improvements in two or more objectives.

Typically these methods modify the selection of solutions

based on Pareto dominance relationships, either through

dividing the search hyperspace into hypercubes, or through

the direct dominance comparison of solutions in the

population. MOEAs are designed to work with multiple

objectives making them capable of handling multi-

objectivization techniques. The reader is referred to for a

complete description of EAs. See also for a more complete

description of multi-objective problems, Pareto concepts, and

an overview of various types of MOE As.

Multi-objectivization is a term originally coined by

Knowles et al. The term describes the process of

reformulating a single objective problem into a multiple-

objective problem and then solving it with amultiple objective

method. There are two types of multi-objectivization methods:

those that decompose the original objective into smaller

objectives, and those that use new objectives that were not

components to the main objective function. Knowles et al.

studied hill-climbers in solving a Traveling Salesman Problem

(TSP). The original objective was divided into two sub-

objectives where the sum of the two sub-objectives equals the

original objective. The multiple-objective hill-climbers

wereshownto outperform their single-objective hill-climber

counterparts. Since the sub-objectives may contain local

minima and maxima and those minima and maxima do not

always correspond to the global minima and maxima, local

minima can be overcome by the multiple-objective hill-

climber through picking between solutions in either sub-

objective space.

Multi-objectivization is a divide-and-conquer method

where a problem is sliced into one or more search spaces. The

concept of optimizing a problem through divide-and-conquer

techniques is not new. For example, branch-and-bound

techniques have been used formally for over half a century in

both integer and mixed-integer programming problems. Multi-

objectivization by decomposition differs from many past

divide-and-conquer methods in that multi-objectivization by

decomposition explicitly divides problem objective(s) rather

than explicitly dividing the problem search space.

Multi-objectivization has been examined in various

areas. Abbass and Deb [10] studied multi-objectivization by

adding solution age as an additional objective where solutions

were given a birth rank based upon the generation in which

they were created.

Volume V, Issue IV, April 2016 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 94

III. CONCLUSION

This paper presents a novel knowledge-based

approach for the job shop scheduling problem (JSSP) by

utilizing the various constituents of the computational

intelligence techniques such as Genetic Algorithm (GA), Ant

Colony Optimization (ACO) and Particle Swarm

Optimization (PSO). This research focused primarily on

discovering new approaches that can match the computational

intelligence techniques in solving Job Shop Scheduling

problems. Significant improvements can be made by

modifying the goals of this paper and adopting techniques to

extend the knowledge of job shop scheduling problems. The

research dealt specifically with the classical 10x10 job shop

scheduling problem with the objective of minimizing the

makespan

REFERENCES

[1]. Parviz Fattahi, FariborzJolai, and JamalArkat, “Flexible job shop

scheduling with overlapping in operations”, Elsevier Journal of
Applied Mathematical Modelling, Vol.33, pp.3076–3087, 2009.

[2]. D.Prot, and O. Bellenguez-Morineau, “Tabu search and lower

bound for an industrial complex shop scheduling problem”,

Elsevier Journal of Computers & Industrial

Engineering,Vol.62,pp.1109–1118,2012.

[3]. Guohui Zhang, Liang Gao, and Yang Shi, “An effective genetic
algorithm for the flexible job-shop scheduling problem”, Elsevier

Journal of Expert Systems with Applications, Vol.38, pp. 3563–

3573, 2011.

[4]. J.Heinonen, and F.Pettersson, “Hybrid ant colony optimization and
visibility studies applied to a job-shop scheduling problem”,

Elsevier Journal of Applied Mathematics and Computation,

Vol.187, pp.989–998, 2007.
[5]. F.Pezzella, G.Morganti, and G.Ciaschetti, “A genetic algorithm for

the Flexible Job-shop Scheduling Problem”, Elsevier Journal of

Computers & Operations Research, Vol.35, pp.3202 – 3212, 2008.
[6]. EugeneLevner, VladimirKats, DavidAlcaide López de Pablo, and

T.C.E. Cheng “Complexity of cyclic scheduling problems: A state-

of-the-art survey”, Elsevier Journal of Computers & Industrial
Engineering, Vol.59, pp.352–361, 2010.

[7]. Liang Gao, Guohui Zhang, Liping Zhang, and Xinyu Li, “An

efficient mimetic algorithm for solving the job shop scheduling
problem”, Elsevier Journal of Computers & Industrial

Engineering, Vol.60, pp.699–705, 2011.

[8]. Xiao-Yuan Wang, Ming-Zheng Wang, and Ji-Bo Wang, “Flow
shop scheduling to minimize make span with decreasing time-

dependent job processing times”, Elsevier Journal of Computers &

Industrial Engineering,Vol.60,pp.840–844,2011.
[9]. Leila Asadzadeh and Kamran Zamanifar,"Design and

Implementation of a Design and Implementation of a Multi-

Agent System for Job Shop Scheduling Problem”, Journal of

Computer Science and Security, Vol.5, No.2, pp.287-297, 2011.

[10]. Surekha and Sumathi, "Solving Fuzzy based Job Shop Scheduling

Problems using GA and ACO", Journal of Emerging Trends in
Computing and information Sciences, Vol.1, No.2, pp.95-102,

2010.

[11]. Tamer F. Abdelmaguid,"Representations in Genetic Algorithm for
the Job Shop Scheduling Problem: A Computational Study”,

Journal of Software Engineering & Applications, Vol.3, pp.1155-

1162, 2010.
[12]. Miloš Šeda, "Mathematical Models of Flow Shop and Job Shop

Scheduling Problems", Journal of Mathematical, Computational,

Physical and Quantum Engineering, Vol.1, No.7, pp.295-300,
2007

[13]. S.Sureshkumar, G.Saravanan, and S.Thiruvenkadam “Optimizing
Make span in JSSP Using Unordered Subsequence Exchange

Crossover in GA”, Journal of Computer Engineering, Vol.8, No.5,

pp.41-46, 2013.
[14]. James C. Chen, Cheng-Chun Wu, Chia-Wen Chen, and Kou-

Huang Chen, “Flexible job shop scheduling with parallel machines

using Genetic Algorithm and Grouping Genetic Algorithm”,

Elsevier Journal of Expert Systems with

Applications,Vol.39,pp.10016–10021,2012.

[15]. Darrell F. Lochtefelda, and Frank W. Ciarallo, “Helper-objective
optimization strategies for the Job-Shop Scheduling Problem”,

Elsevier Journal of Applied Soft Computing, Vol.11, pp.4161–

4174, 2011.

