Complex Demodulator: A VLSI Architecture and FPGA Implementation

Neema Rajan, Jayaraj U K

Dept. of Electronics & Communication, Calicut University

Abstract—In this paper we developed Complex demodulator with application in mind as Ultrasound Imaging. The main objective is to model in MATLABTM, hardware architecture implementation in Verilog HDL adopting 1.15 fixed point data representation and synthesizing using XILINX ISE® Spartan6 FPGA as target. The developed architecture consists of input memory, LUTs, Mixers and FIR filters which convert complex modulated signal stored in 1.15 format into in-phase (I), and quadrature-phase (O) channel outputs each of signed 32 bit. The hardware based results have been compared and validated with entire demodulator modeled in MATLAB® and finally the error values are calculated. The maximum working frequency of the design can be as high as 151.777MHz with minimum period of 6.589ns utilizing 8 clock cycles per symbol and proved to be simple, convenient as well as hardware resource saving than other conventional implementation methods.

Keywords—Complex Demodulator, IP Core, IQ demodulator, CosLUT, Sine LUT.

I. INTRODUCTION

Itrasound imaging systems are used in medical field to explore interior areas of a patient's body. It displays images in real time and is considered safe, noninvasive and less costly than other cross-sectional imaging modalities, e.g., X-ray CT, MRI and PET [3]. In various embodiments the probe does not include the demodulator rather it is performed by the complex demodulator within the host system. More specifically the complex demodulator performs digital demodulation, and optional filtering is adopted. The demodulated ultrasound data may be stored in a memory such as temporarily to perform one or more embodiments. The complex demodulator demodulates the RF signal to form IQ data pairs representative of the echo signals, which in various embodiments have a reduced data transfer rate than the transfer rate of the ADC. The RF or IO element data may then be routed directly to the memory. The processor then processes the output of the RF processor and prepares frames of ultrasound information for display. The display includes monitors that include patient information and ultrasound images for diagnostics and analysis.

Any band pass signal can be represented by a sum of inphase and quadrature components. The in-phase and quadrature signals represent a slowly varying complex envelope which is applied to the high-frequency carrier. A complex demodulation is the standard approach used to obtain quadrature samples. The input signal is multiplied by the output of a quadrature oscillator running at the demodulation frequency. The sine and cosine products are low-pass filtered to remove the sum frequencies. The down shifted difference frequencies are digitized at a rate greater than signal bandwidth, yielding a pair of in-phase and quadrature samples.

II. THEORY

A. IQ Demodulation

Here, the baseband digital information is separated into two independent components: I (*In-phase*) & Q (*Quadrature*) components [2]. These components are then combined to form the baseband modulating signal.

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$A\cos(2\pi f_c t + \varphi) = A\cos(2\pi f_c t)\cos(\varphi) - A\sin(2\pi f_c t)\sin(\varphi)$$
(1)

The conversions to band pass signal increases the performance of the complex demodulator, since its sampling frequency increases. In communication system [7] signal is demodulated in its in-phase and quadrature component. Basically, it consists of splitting the received signal and multiplying each arm by *cos* and *sin* functions. This procedure provides I & Q components after low pass filtering. FIR LPF

$$A = A \cos(\varphi)$$

$$I = A \cos(\varphi)$$

$$Q = A \sin(\varphi)$$

$$A \cos(2\pi f_c t + \varphi) = I \cos(2\pi f_c t) - Q \sin(2\pi f_c t)$$

passes only the lower frequencies.

Given the low-pass filter which has an impulse response $h_{LP}(n)$ of order *N*, the output of the in-phase and quadrature channels [1] can be expressed as,

$$I(n) = h_{LP}(n) * \left[x(n) \cdot \cos\left(\frac{\pi}{2}n\right) \right]$$
$$= \sum_{m=0}^{N-1} h_{LP}(m) \cdot x(n-m) \cdot \cos\left(\frac{\pi}{2}(n-m)\right)$$
(2)

$$Q(n) = h_{LP}(n) * \left[x(n) . \sin\left(\frac{\pi}{2}n\right) \right]$$
$$= \sum_{m=0}^{N-1} h_{LP}(m) . x(n-m) . \sin\left(\frac{\pi}{2}(n-m)\right)$$

(3)

III. ARCHITECTURE

In the proposed architecture ADC output is given to the input memory and its output is fed as the input of two multipliers. These inputs multiplied with the cos and sine LUT generates I & Q components respectively. It is then filtered out by using filter, whose filter order is 128. The outputs of the filter are stored to output memory. The whole process is controlled by the controller. Fig 1 depicts the implemented architecture.

Fig. 1 Architecture of complex demodulator

Xilinx CORE [4] generates and delivers parameterized cores optimized for FPGAs. It is mainly used to create high density, high performance designs in Xilinx FPGAs in less time. Here we are generating different IP core for demodulation process.

The demodulator consist of 16 bit input data and two 32 bit output which are I & Q. Also validated bits are given to both input and output. Start and stop demodulated bit controls the top module initialization and stop.

A. Input Memory

Input memory as in fig 2 is a true dual port ram i.e., ping pong for real time processing which has two independent access ports that permit shared access to a central pool of memory. Here, inputs are of 1.15 format. It stores and provides input band pass signal for demodulator. Band pass signal is generated by using chirp function in MATLABTM.

The MATLAB generated COE file is then loaded to the block memory generator as input of size 1024*16. The 16 bit

ADDRA[10:0]	
DINA[15:0]	
ENA	
REGCEA>	> SBITERR
WEA[1:0]	> DBITERR
RSTA>	RDADDRECC[10:0]
INJECTOBITERR	DOUTB[15:0]
DINB[15:0]	
ENB	
REGCEB	
WEB[1:0]	
RSTB	
CLKB	

output is driven by the controller section.

B. Look Up Table (LUT)

The LUT of cosine and sine function by forming a COE file, which stands for coefficient files that contains the contents of the block memory for the specified read depth and read width values of the image. These are then loaded to single port ROM IP core. The LUT consist of a 4 bit data input and a 16 bit output line and clock as shown in the fig 3.

Fig. 3 Single port ROM

C. Multiplier

The output of input memory along with output taken from sin/cos LUT is multiplied which provides 2.30 output format which can be scaled down to 1.15 using right shift arithmetic operation.

D. FIR Filter

Here we are using FIR Low Pass Filter, which filters out higher frequencies at the output and passes only the low frequencies. The filter coefficients are loaded as COE file.

Fig 4 shows the filter response and the basic parameters used here. Using this filter extracted the in-phase and quadrature parts. The filter out obtained in this manner is of 2.30 format.

Fig. 4 FIR frequency response

E. Output Memory

It resembles the input memory section which is discussed earlier. The filtered in-phase and quadrature components which are of 2.30 format, are stored in their corresponding inphase & quadrature output memory. These memory values are finally plotted in MATLABTM for validating with MATLABTM model.

F. Controller

Now let us see how the controller controls from start to end of the complex demodulation process based on the structured state machine. The output of the controller decides the functionality of each block.

1) Contoller FSM

State diagram helps in coding the different blocks of the system. Here we are using Mealy diagram for this purpose as shown in fig 5. It consists of different states where functions of different blocks are taken into consideration. Our system can be divided into five different levels and works based on the predicted timing diagram as depicted in fig 6.

Firstly the system will be in initial state before starting the process. Initialization is by clock (Clk), reset (Rst) and start_demod which is provided as a trigger pulse.

Input memory values are read when input mem_web is at logic 0 followed by enabling cos and sin LUT in the read state, else it will remain in the same state itself.

The whole process of multiplication is done in multiplier state. When valid signal corresponding to each multiplier block is active then input memory dout values are fed to the input of multiplier block and then multiplication of LUT data and input memory values takes place in order to produce in-phase and quadrature output. The quadrature output will be 90° out of phase with in-phase.

The fourth state will be initiated when control unit fetches the in-phase and quadrature values to low pass filter. Here, when new data (ND) and ready for data (RFD) are active then these data will be directed to the LPF. After completing the process we get the required in-phase and quadrature filtered output.

Next, in write state Ready (RDY) signal is continuously monitored, when these become active high the filtered inphase and quadrature values are written to their respective inphase and quadrature output memory.

Finally when address count (Addr-count) reaches 1023 the demodulation process is stopped and is returned to the initial state.

Fig. 5 FSM state machine

IV. SIMULATION

In order to reduce the complexity of translating model to HDL the entire demodulator have been coded in MATLABTM in order to validate the hardware results by considering the below Table I specification in MATLABTM.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) Volume V, Issue VI, June 2016 | ISSN 2278-2540

TABLE I: SPECIFICATION IN MATLABTM

Parameters	Symbol	Value
Center frequency	fc	4MHz
Sampling frequency	fs	40MHz
Bandwidth	BW	50% fc
Sampling interval	Ts	25ns
Block size for processing	Ν	1024samples
Pulse width	PW	0.256us
Filter order	М	128

<u>Clk</u> –	
Start demod	
Web	t <u>e</u> 1
Read mem add	
Ena-cos	
Ena-sin	
Cos-addr	
Sin-addr	
Data-out b	$\longrightarrow \longrightarrow$
Data-out cos	
Data-out sin	$\longrightarrow \longrightarrow$
Lpf-I	
Lpf-Q	
Rfd	
Rdy	
Wea	
In-phase o/p	
Quadrature o/p	
O/p mem addr	
O/p mem din	
Addr-count	
Stop demod	

Fig. 7 MATLABTM in-phase output

Fig. 8 MATLABTM quadrature output

In-phase and Quadrature output modeled from $MATLAB^{TM}$ is depicted in fig 7 and fig 8 respectively and fig 9 shows Verilog output.

Name	Value	0.0000000 s	0.0000002 s	0.0000004 s	0.0000006 s	0.0000008 s	0.0000010 s
]]a cik	1	nnnnnnnn	nhaanaanaana	haaaaaaaaa	hononnonn	haaaaaaaa	Innnnnnnn
1 rst n	1						
🔓 start demod	0						
▶ 🚮 state[2:0]	2	0 0000	(4		0	0.0X 4
addr count[10:0]	001			000		X	001
1 stop demod	0						
inout mem		ł.					
addra[10:0]	000			0	00		
doutb[15:0]	4b2c	0 0b67 V		462	c		X 13d9
cos lut		M					~
1 ena	1						
► 🛃 addra[3:0]	2						2
douta(15:0)	278e	0000		278	2		V d872
sin lut							
1 ena	1						
► Saddra[3:0]	2			1			2
douta[15:0]	79bc	0000 XX		-	79bc		
cos mul							
1 x valid	1						
▶ ₩ x(15:01	4b2c	0 0b67 V		4b2	-		X 13d9
1 v valid	1						
v(15:0)	278e	0000		278	2		V d872
Um z valid	0						n in
► 115:01	0000	0000	c	00	00		VV 0000
▶ 🚮 mul result[31:16]	0000	0000	7	00	00		XX 0000
sin mul							
▶ 📑 wea[3:0]	f	k –		0		X	X O
addra[10:0]	001			000		×	001
doutb[31:0]	0000000			00000000) 00039228
v(15:0)	79bc	1 0000 XX			79bc		
Un z valid	0						
zí15:01	0000	0000		00	00		XX 0000
mul_result[31:16]	0000	0000	(00	po		XX 0000
inphase filter							and a second
1 nd	0						
🕨 📑 din[15:0]	0000	0000	d	00	00)() 0000
1 rdy	0						
1/0 rfd	1						
▶ 📑 dout[31:0]	0003108			0000000		X	00031088
quad filter				1			
1 nd							
	0						
🕨 📑 din[15:0]	0 0000	0000		00	0		XX 0000
 din[15:0] dout[31:0] 	00000	0000		00000000	0	X_	00039228
 din[15:0] dout[31:0] output inphase 	00000	0000 🚫		00	00	x	00039228
 din[15:0] dout[31:0] output inphase dues[3:0] 	0 0000 0003922			00000000	D0	X	00039228
din[15:0] dout[31:0] output inphase wea[3:0] addra[10:0]	0 0000 00039220 £ 001			00000000	00		00039228 X 0 001
 din[15:0] dout[31:0] output inphase wea[3:0] douta[10:0] douta[10:0] doutb[31:0] 	0 0000 0003922 f 001 0000000			00 00000000 0 000 000 00000000	D0		00039228 00039228 0000 001 001 00031088
din[15:0] c dout[31:0] output inphase uwea[3:0] douto[31:0] douto[31:0] douto[31:0] output ouad	0 0000 0003922 f 001 0000000			00 00000000 0 00000000 00000000			00039228 00039228 0001 001 001 00031088
din[15:0] din[15:0] dout[31:0] output inphase if wea[3:0] dout[10:0] doutb[31:0] output doutb[31:0] output output wea[3:0]	0 0000 0003922 f 001 0000000			000000000000000000000000000000000000000			00039228 00039228 0001 0001 00031088 000000000000000000000000000000000000
*********************************	0 0000 0003922 f 001 0000000 f 001			00 00000000 0000 0000 00000000 0 0 0000			000039228 00039228 0001 001 00031088 001 001

Fig. 9 Verilog output

V. RESULTS

 $MATLAB^{TM}$ is used to check algorithm of full system. Each of the output memory values corresponding to in-phase and quadrature phase obtained in Verilog HDL are plotted in MATLABTM as shown in Fig10 and fig11 respectively.

Fig. 10 Verilog HDL in-phase output plotted in MATLABTM

Fig. 11 Verilog HDL quadrature output plotted in MATLABTM

In order to verify the functionality the waveforms are compared with the entire model modeled in MATLABTM and finally error values are calculated using the following equation,

$$Error = std(X) / sqrt(length(X))$$

(4)

where X is the in-phase or quadrature values.

Calculated error values are indicated in Table II. It is found that error values are smaller for in-phase and quadrature obtained using XILINX ISE®.

TABLE II: CALCULATED ERROR VALUES

Tool	Error values		
MATLAB TM	In-phase =	0.0104	
	Quadrature =	0.0107	
XILINX ISE®	In-phase =	0.0042	
	Quadrature =	0.0036	

The described architecture has been implemented on Xilinx Spartan-6 SP605 evaluation platform. Table III shows the device utility.

TABLE III-	DEVICE	UTILIZA	TION	SUMMA	RY
TADLL III.	DLVICL	UTILIL	11010	JOININIA	1 1

Slice LUTs	1,399 out of 27,288
Slice Registers	2,814 out of 54,576
RAMB 16B	13 out of 116
RAMB 8K	5 out of 232
IOBs	84 out of 296
Adders/Subtractors	6
Multiplexers	136

VI. CONCLUSION AND FUTURE SCOPE

This paper has demonstrated a novel architecture for complex demodulation. The different modules of demodulator was simulated and finally synthesized and ported the RTL implementation in Xilinx Spartan6 ML605 FPGA platform. The results were proved to be simple, convenient and hardware resource saving with maximum working frequency of 151.777MHz with minimum period of 6.589ns utilizing 8 clock cycles per symbol compared to other conventional implementation methods.

The future work will include increasing the speed of the system by adding pipeline registers in critical path in the filter design.

REFERENCES

- J.M.P. Langlois and D. Al-Khalili, "Polyphase Filter Approach For High Performance, Fpga-Based Quadrature Demodulation" in *Journal of VLSI Signal Processing*, vol, 32, 237–254, 2002.
- [2]. Agilent Vector Signal Analysis Basics Application Note 150-15 literature number 5989-1121EN Palo Alto, CA, July 14, 2004.
- [3]. Kerem Karadayi, Cheoljin Lee and Yongmin Kim, "SoftwareBased Ultrasound Beam forming on Multi-core DSPs" Image Computing Systems Laboratory Departments of Electrical Engineering and Bioengineering University of Washington Seattle, WA 98195.
- [4]. B.Muralikrishna, K.Gnana Deepika, B.Raghu Kanth3 "Image Processing using IP Core Generator through FPGA" in International Journal of Computer Applications (0975 – 8887) Vol, 46– No.23, May 2012.
- [5]. Bomar B.W."finite wordlength effects" digital signal processing Hand booked. Vijay k. madisetti and Douglas b. Williamsboca raton: crc press llc, 1999.
- [6]. Basem Ahmed Hassan, "Low-Cost Digital Ultrasound Beam Former Design using Field Programmable Gate Arrays" *Cairo University* Giza, Egypt 2012.
- [7]. David Bernal, Pau Closas, Juan A. Fernandez Rubio, "Digital I&Q demodulation In array Processing: Theory And Implementation" 16th European Signal Processing Conference (Eusipco 2008), Lausanne, Switzerland, August 25-29, 2008.
- [8]. H. Samueli and B. C. Wong, "A VLSI Architecture for a High Speed All-Digital Quadrature Modulator and Demodulator for Digital Radio Application," *IEEE J. Select. Areas Commun.*, vol. 53, no.8, pp. 1512–1519, October 1990.

- [9]. I. Janiszwski, B.H. Meuth "Numerically controlled oscillators With Hybrid function generators," *IEEE transactions on Ultrasonic's, vol, 49, No.7, July2002.*
- [10]. Weinstein, C. and Oppenheim, A.V., "A comparison of roundoff noise in floating-point and fixed-point digital filter realizations," Proc. *IEEE* vol, 57, 1181–1183, June 1969.
- [11]. J.Bhasker, B.S.Publications, "AVerilog HDL Primer", 2nd Edition, 2001 ISBN 10: 8178000121 ISBN 13: 9788178000121.
- [12]. M .Morrismano, Michael d. Ciletti, "Digital Design" 4thEdition Pearson Prentice Hall 2009 ISBN978-81-317-1450-8.