
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 10

Performance Analysis of Hbase
Neseeba P.B, Dr. Zahid Ansari

Department of Computer Science & Engineering, P. A. College of Engineering, Mangalore, 574153, India

Abstract— Hbase is a distributed column-oriented database built

on top of HDFS. Hbase is the Hadoop application to use when

you require real-time random access to very large datasets.

Hbase is a scalable data store targeted at random read and

writes access of fully structured data. It's invented after Google's

big table and targeted to support large tables, on the order of

billions of rows and millions of columns. This paper includes step

by step information to the HBase, Detailed architecture of

HBase. Illustration of differences between apache Hbase and a

traditional RDBMS, The drawbacks of Relational Database

Systems, Relationship between the Hadoop and Hbase, storage of

Hbase in physical memory. This paper also includes review of the

Other cloud databases. Various problems, limitations,

advantages and applications of HBase. Brief introduction is given

in the following section.

I. INTRODUCTION

base is called the Hadoop database because it is a

NoSQL database that runs on top of Hadoop. It

combines the scalability of Hadoop by running on the Hadoop

Distributed File System [1] (HDFS), with real-time data

access as a key/value store and deep analytic capabilities of

Map Reduce. Apache Hbase is a NoSQL [2] database that

runs on top of Hadoop as a distributed and scalable big data

store. This means that Hbase can leverage the distributed

processing paradigm of the Hadoop Distributed File System

(HDFS) and benefit from Hadoop’s Map Reduce

programming model [3]. It is meant to host large tables with

billions of rows with potentially millions of columns and run

across a cluster of commodity Hadoop roots, Hbase is a

powerful database in its own right that blends real-time query

capabilities with the speed of a key/value store and offline or

batch processing via Map Reduce. In short, Hbase allows you

to query for individual records as well as derive aggregate

analytic reports across a massive amount of data. As a little bit

of history; Google was faced with a challenging problem:

How could it provide timely search results across the entire

Internet? The answer was that it essentially needed to cache

the Internet and define a new way to search that enormous

cache quickly. It defined the following technologies for this

purpose:

1) Google file system: A scalable distributed file system

for large distributed data-intensive applications.

2) Big Table: A distributed storage system for

managing structured data that is designed to scale to

a large size: petabytes of data across thousands of

commodity servers.

3) Map Reduce: A programming model and an

associated implementation for processing and

generating large data set. It was not too long after

Google published these documents that we started

seeing open source implementations of them, and in

2007, Mike Cafarella released code for an open

source Big Table implementation that he called

Hbase.

II. DATA MODEL

Hbase actually defines a four-dimensional data model and the

following four coordinates define each cell (see Figure 1):

1) Row Key: Each row has a unique row key; the row

key does not have a data type and is treated internally

as a byte.

2) Array. Column Family: Data inside a row is

organized into column families; each row has the

same set of column families, but across rows, the

same column families do not need the same column

qualifiers. Hbase stores column families in their own

data files, so they need to be defined upfront, and

changes to column families are difficult to make.

3) Column Qualifier: Column families define actual

columns, which are called column qualifiers. Column

qualifiers are columns themselves.

4) Version: Each column can have a configurable

number version, and you can access the data for a

specific version of a column qualifier. And then

append the time (as a long) to hash. The importance

in using a hash is two-fold:

1) It distributes values so that the data can be

distributed across the cluster.

2) It ensures that the length (in bytes) of the key is

consistent and hence easier to use in table scans.

Figure 1.HBase Four-Dimensional Data Model

H

javascript:popUp('/content/images/art_haines_hbases1_1/elementLinks/haines_hbase_1_1_01.jpg')

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 11

 As shown in Figure 2 an individual row is accessible

through its row key and is composed of one or more column

families. Each column family has one or more column

qualifiers ―column‖ and each column can have one or more

versions. To access an individual piece of data, you need to

know its row key, column family, column qualifier, and

families. Each column family has one or more column

qualifiers ―column‖ and each column can have one or more

versions. To access an individual piece of data, you need to

know its row key, column family, column qualifier, and

version. When designing an Hbase data model, it is helpful to

think about how the data is going to be accessed. You can

access Hbase data in two ways:

1) Through their row key or via a table scan for a range

of row keys

2) In a batch manner using map-reduce.

3) This dual-approach to data access is something that

makes Hbase particularly powerful. Typically,

storing data in Hadoop means that it but not

necessarily for real-time access.Let’s first look at the

real-time access. As a key/value store, the key is the

row key, and the value is the collection of column

families, as shown Figure 2, the key is the row key

we have been talking about, and the value is the

collection of column families. You can retrieve the

value associated with a key; or in other words, you

can ―get‖ the row associated with a row key, or you

can retrieve a set of rows by giving the starting row

key and ending row key, which is referred to as a

table scan. You cannot query for values contained in

columns in a real-time query, which leads to an

important topic: row key design.

The design of the row key is important for two reasons:

1. Table scans operate against the row key, so the

design of the row key controls how much real-

time/direct access you can perform against Hbase.

2. When running Hbase in a production environment, it

runs on top of the Hadoop Distributed File System

(HDFS) and the data is distributed across the HDFS

based on the row key. If all your row keys start with

―user-‖ then most likely the majority of your data

will be isolated to a single node . Your row keys,

therefore, should be different enough to be

distributed across the entire deployment/

3. The manner in which you design your row keys

depends on how you intend to access those rows. If

you store data on a per user basis, then one strategy

is to leverage the fact that row keys are ultimately

stored as byte arrays in Hbase,

Figure 2.HBase Key-value Data Model

III.COMPARISION BETWEEN HBASE AND RDBMS

Hbase and other column-oriented database are often compared

to more traditional and popular relational database or

RDBMS.

Table 1.Comparision between HBASE and RDBMS

1 HBASE 2 RDBMS

Hbase mainly on Column-

oriented approach

Rdms purely Row-oriented

approach

Flexible and dynamic
schema,

Only Fixed schema

Works very well with sparse

tables.
.Not efficient for sparse tables.

Hbase does not use any query
language

Full of query language

Wide tables can be used only Narrow tables are used

Tight – Integration with MR Not really

De-normalizes user data. Normalize as you can

Horizontal scalability-just
add hard war.

Hard to share and scale.

Consistent Consistent

.No transactions can be one . Transactional database

Works well for semi-

structured data as well as
structured data

Works well for structured data.

IV. ARCHITECTURE

 The general architecture of habse consisting of following

Figure 3 shows gives us the architecture of Hbase and

Hadoop. The files are primarily handled by the

HRegionServer’s[4]. But in certain scenarios even the

Hamster will have to perform low-level file operations. We

also notice that the actual files are in fact divided up into

smaller blocks when stored within the Hadoop Distributed

File system (HDFS). This is also one of the areas where you

can configure the system to handle larger or smaller data

better.

javascript:popUp('/content/images/art_haines_hbases1_1/elementLinks/haines_hbase_1_1_01.jpg')

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 12

Figure3.Architecture of Hbase

The general flow is that a new client contacts the Zookeeper

quorum first to find a particular row key. It does so by

retrieving the server name that hosts the -ROOT- region from

Zookeeper. With that information it can query that server to

get the server that hosts the .META. Table. Responsible to

assign the regions to each HRegionServer when you start

Hbase. This also includes the "special" -ROOT- and Both of

these two details are cached and only looked up once. Lastly it

can query the .META. Server and retrieve the server that has

the row the client is looking for. The Hamsters is responsible

to assign the regions to each.

HRegionServer when you start Hbase. This also includes the

"special" -ROOT- and .META. Tables. When we take a

deeper look into the region server, it contain regions and

stores as shown below:

Figure 4. Region server

Table 2 .Open source cloud databases.

Open source

cloud database

Developed by Features

Hbase

Hbase is an open source

distributed database. It was

first implemented and

released by Power Set in

2007. Then it became official

subproject of Hadoop from

Apache foundation [7].

 Hbase employs master-slave architecture. The master keeps track of which slave

stores which data and dispatch tasks to relevant slaves. This approach takes risk that if

the master node dies, the whole system becomes useless. Hbase is written mostly in

Java, and provides APIs through Thrift. It also provides a shell in which user can use

HBaseQuey Language (HQL) to manipulate the database.

Cassandra Cassandra is an open source

distributed database. It’s first

implemented and released by

a group in Facebook in 2008.

Cassandra combines features from Google BigTable and Amazon Dynamo, making it

a highly scalable key-value store.

 Casandra is written in JAVA and provides APIs through Thrift which enables

different programming languages to operate Cassandra[8]. However, the eventually

consistent approach causes data inconsistency over small period of time. Some

consistency sensitive application might not tolerate Cassandra. But for most web

services and applications, this is a popular trade-off to enhance scalability.

Hyper table Hyper table is an open source

distributed database. It’s first

developed and released by

Zvents in 2007.

Similar to Hbase, Hypertable employs a master- slave architecture in which the master

only keeps track of the data among slave nodes. The most famous user of Hypertable

is Chinese search engine Baidu. Hypertable is written in C++ and provides APIs via

Thrift. As Hbase, users can operate Hypertable[9] by provided shell Hypertext Query

Language .

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 13

MemcacheDB Steve Chu - an open source

developer released the

resulting system as

MemcacheDB[10] in 2007.

 MemcacheDB employs a master-slave approach for data access, with which clients

can read from any node in the system but can only write to the master node. This

makes sure a high consistency even though through a multiple entry reading.

MemcacheDB[11] uses Berkeley DB for data persistence and replication and is

written in C. The memcached library is someplace the Clients can use to access the

database. Clients perform queries via the memcachedget_multi function to request

multiple keys at once.

MongoDB MongoDB was designed to

provide both the speed and

scalability of key-value store

and was developed and

released as open source in

2008 by 10gen.

MongoDB is a document-oriented database that allows data to be manifested like

documents. MongoDB[12] offers three replication styles: master-slave replication, a

―replica-pair‖ style, and a limited form of master-master replication. MongoDB has its

own hashtable-liked query language and also provide the scanner interface which is

similar to Hbase and Hypertable.

MongoDB is deployed exactly the same way as the MemchacheDB[13] deployed it

need to be carefully configured using the configuration files.

Voldemort Voldemort emulates Amazon

Dynamo and combines it with

caching. It was released as

open source in 2009.

Read and write can be performed at any node by clients in Voldemort[14].there is

an inconsistent during the view of data across the system. Fetches on a key may result

in Voldemort returning multiple values with their version number, this makes a

comparison with Cassandra because that Cassandra can only opposed to a single key.

Voldemort is written in Java and exposes its API via Thrift; there are native bindings

to high-level languages as well that employ serialization via Google Protocol Buffers.

A shell is also provided for interactive queries.

V. ADVANTAGES

Advantages of HBASE over other databases

1. Can store large data sets on top of HDFS [15] file

storage and will aggregate and analyse billions of

rows present in the HBASE tables. In Hbase database

can be shared.

2. Operations such as data reading and processing will

take small amount of time as compared To traditional

relational model.

3. Random read and write operations for online

analytical operations HBASE is used extensively.

4. For example: In banking applications such as real-

time data updates in ATM machines, HBASE can

used.

VI. PROBLEMS WITH HBASE

Some of the problems of hbase are as follows

1. Slow improvements in the security for the different

users to access the data from Hbase.

2. In Hbase, we cannot implement any cross data

operations and joining operations, of course, we can

implement the joining operations using Map Reduce,

which would take a lot of time to designing and

development. Tables join operations are difficult to

perform in Hbase. In some use case, its impossible to

create join operations that related to tables that are

present in Hbase.

3. Hbase would require new design when we want to

migrate data from RDBMS external sources to Hbase

servers. However, this process takes a lot of time.

4. It's very difficult to store large size of binary files in

Hbase

5. The storage of Hbase will limit real-time queries and

sorting

6. Key lookup and Range lookup in terms of searching

table contents using key values, it will limit queries

that perform on real time.

7. Default indexing is not present in Hbase.

Programmers have to define several lines of code or

script to perform indexing functionality in Hbase

8. Expensive in terms of Hardware requirements and

memory blocks allocations.

9. More servers should be installed for distributed

cluster environments (like each server for Name

Node, Data Nodes, ZooKeeper, and Region Servers)

10. Performance wise it require high memory machines.

11. Costing and maintenance wise it is also higher.

VII. LIMITATION OF HBASE

1. We cannot expect completely to use Hbase as a

replacement for traditional models. Some of the

traditional models features cannot support by Hbase

2. Hbase cannot perform functions like SQL. It doesn't

supports SQL structure, so it does not contain any

query optimizer

3. Hbase is CPU and Memory intensive with large

sequential input or output access while as Map

Reduce[16] jobs are primarily input or output bound

with fixed memory. Hbase integrated with Map-

reduce jobs will result in unpredictable latencies

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 14

4. In a shared cluster environment, the set up requires

fewer task slots per node to allocate for Hbase CPU

requirement.

VI. CONCLUSION

This paper contains introduction to Hbase and survey of other

existing databases. Paper also includes little of architecture of

Hbase .Brief idea of other open source data bases.

comparison of Hbase with Relational database.

We are able to conclude that Hbase is highly featured

database than any other database .Hbase is faster than

sequential execution for larger amounts of data as well as

For smaller amounts of data Hbase is scalable as the amount

of data increases because it uses technology of Map Reduce

programming. The better way would be to go with sequential

execution and with lesser number of processors.Idea of

different advantages, disadvantages and problems ,limitations

with application is mentioned .

REFERENCES

[1]. Huang, Jian, et al. "High-performance design of hbase with rdma

over infiniband." Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International.IEEE,2012

[2]. Leavitt, Neal. "Will NoSQL databases live up to their promise?."

Computer 43.2 (2010).
[3]. Lämmel, Ralf. "Google’s MapReduce programming model—

Revisited." Science of computer programming 70.1 (2008): 1-30.

[4]. Carstoiu, D., A. Cernian, and A. Olteanu. "Hadoop hbase-0.20. 2
performance evaluation." New Trends in Information Science and

Service Science (NISS), 2010 4th International Conference on.

IEEE, 2010.
[5]. Lineland, HBaseArchitecute – 101 – Storage, Oct 12, 2009,

http://www.larsgeorge.com/2009/10/hbase-architecture-101-

storage.html
[6]. Junqueira, Flavio, and Benjamin Reed. ZooKeeper: distributed

process coordination. " O'Reilly Media, Inc.", 2013.

[7]. Yingjie Shi, XiaofengMeng, Jing Zhao, Xiangmei Hu, Bingbing
Liu and Haiping Wang, Benchmarking Cloud-based Data

Management Systems, in Proceeding CloudDB ’10 Proceedings of

the second international workshop on Cloud data management
[8]. Chris Bunch, Jonathan Kupferman and Chandra Krintz, Active

Cloud DB: A Database-Agnostic HTTP API to Key-Value

Datastores, April 2010 UCSB Tech Report 2010-07

[9]. Hypertable.Eben Hewitt, Cassandra: The Definitive Guide,

O’Reilly Media, November 2010, ISBN: 978-1-4493-904

Cassandra. http://cassandra.apache.org/
[10]. Khetrapal, Ankur, and Vinay Ganesh. "HBase and Hypertable for

large scale distributed storage systems." Dept. of Computer

Science, Purdue University (2006): 22-28.
[11]. Wei-ping, Zhu, L. I. Ming-Xin, and Chen Huan. "Using

MongoDB to implement textbook management system instead of

MySQL." Communication Software and Networks (ICCSN), 2011
IEEE 3rd International Conference on. IEEE, 2011.

[12]. George, Lars. Hbase: The Definitive Guide: Random Access to
Your Planet-Size Data. " O'Reilly Media, Inc.", 2011.

[13]. MemcacheDB.http://memcachedb.org/.

[14]. Voldemort. http://project-voldemort.com/.
[15]. AvinashLakshman and Prashant Malik, Cassandra: a decentralized

structured storage system, ACM SIGOPS Operating Systems

Review Volume 44 Issue 2, April 2010.
[16]. Blazhievsky, Serge. "Introduction to Hadoop, MapReduce and

HDFS for Big Data Applications." SNIA Education (2013).

[17]. Nguyen, Phuong, et al. "A hybrid scheduling algorithm for data
intensive workloads in a MapReduce environment." Proceedings

of the 2012 IEEE/ACM Fifth International Conference on Utility

and Cloud Computing. IEEE Computer Society, 2012.

http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://cassandra.apache.org/
http://memcachedb.org/
http://project-voldemort.com/

