
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VI, Issue X, October 2017 | ISSN 2278-2540 

 

www.ijltemas.in Page 43 
 

Implementation of Efficient Fixed Point ALU with 32 

Bit Processing Capability 
Neelesh Kumar Kachhwaha

1
, Prof. Sunil Shah

2 

1
M. Tech (VLSI Design) Gyan Ganga Institute of Technology and Sciences Jabalpur, MP India 

2
Dept. of ECE Gyan Ganga Institute of Technology and Sciences Jabalpur, MP India 

Abstract— Exploiting computational precision can improve 

performance significantly without losing accuracy in many 

applications. To enable this, we propose an innovative arithmetic 

logic unit (ALU) architecture that supports true dynamic 

precision operations on the fly. The proposed architecture 

targets fixed-point ALUs. In this paper we focus mainly on the 

precision controlling mechanism and the corresponding 

implementations for fixed-point adders and multipliers. We 

implemented the architecture on Xilinx Virtex-5 XC5VLX110T 

FPGAs, and the results show that the area and latency overheads 

are 1% ~ 24% depending on the structure and configuration. 

This implies the overhead can be minimized if the ALU structure 

and configuration are chosen carefully for specific applications.  

The VHDL coded synthesizable RTL code of the Fixed Point 

Arithmetic core has a complexity. We verified the functions of 

the Fixed Point Arithmetic by a simulation with a single 

instruction test as the first step and implemented the Fixed Point 

Arithmetic with the FPGA. 

Keywords—32-Processor, 32-bit fixed point Arithmetic, fixed 

point Processor RISC; VHDL ;) 

I. INTRODUCTION  

he Arithmetic Logic Unit is one of the essential 

components of a computer. It performs arithmetic 

operations such as addition, subtraction, multiplication, 

division and various logical functions. In this paper ALU is 

simulated and analyzed on various parameters such as speed, 

power and number of logical blocks used by that ALU. The 

Arithmetic operations such as addition, subtraction, 

multiplication, division and the logical operations are realized 

using VHDL. Xilinx 8.1i software is used for writing the 

VHDL codes and the simulation is carried out with ModelSim 

5.5f simulator. 

An arithmetic logic unit (ALU) is a combinational digital 

electronic circuit that performs arithmetic and bitwise 

operations on integer binary numbers. This is in contrast to a 

floating-point unit (FPU), which operates on floating point 

numbers. An ALU is a fundamental building block of many 

types of computing circuits, including the central processing 

unit (CPU) of computers, FPUs, and graphics processing units 

(GPUs). A single CPU, FPU or GPU may contain multiple 

ALUs. 

The inputs to an ALU are the data to be operated on operands 

and a code indicating the operation to be performed and status 

information from a previous operation; the ALU's output is 

the result of the performed operation. In many designs, the 

ALU also exchanges additional information with a status 

register, which relates to the result of the current or previous 

operations, because ALUs can be built in so many ways with 

wide specifications. The main objective of the project is to 

have a working ALU that performs different arithmetic and 

logic functions for all possible combinations of the inputs. 

The speed of ALU was not an issue and we wanted it to run at 

low power.  

II. CIRCUIT DESIGN 

This chapter gives an overview of the Hierarchy of the 32-bit 

ALU and its design. First, we will introduce all the different 

types of logic gates that has been used in the design. Then, we 

will give an overview of the 32-bit ALU. Finally, we will 

discuss the top level of the design. 

Operations that can be performed:  

 add (2 cycles)  

 sub (2 cycles)  

 mul (2-3 cycles depending on multi cycle constraint 

for higher speed)  

 reciprocal (31 cycles but less LEs than divider)  

 divider (31 cycles)  

 from Int / to Int (1 cycle)  

to be extended... :)  

III. PIPELINED ARCHITECTURE  

Pipelining is a powerful way of improving the throughput of 

digital systems. The single-cycle processor is upgraded to 

pipelined processor by subdividing the single-cycle processor 

into five pipeline stages. Thus five instructions are executed 

simultaneously, one in each stage. Ideally, the clock frequency 

is almost five times faster because each stage has only one-fifth 

of the entire logic. Since reading, writing the memory, register 

file, and using the ALU typically constitutes the biggest delays 

in processor, the pipeline stages are chosen so that each stage 

involves exactly one of these slow steps.  

T 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VI, Issue X, October 2017 | ISSN 2278-2540 

 

www.ijltemas.in Page 44 
 

The five pipelined stages can be described as follows:  Fetch: 

the processor reads the instruction from instruction memory. 

 Decode: processor reads the source operands from the 

register file and decodes 

 The instruction to produce the control signal.  Execute: 

performs the computation with ALU. 

 Memory: processor reads from or writes into the data 

memory. 

 Write back: processor writes the result to the register file 

when applicable. 

Each instruction is thus broken up into a series of steps, and 

several steps of different instructions are executed 

simultaneously, improving the throughput significantly.  

IV. PIPELINED DATA PATH 

The single-cycle processor is converted into the pipelined 

processor by adding registers. Figure 2.6 shows the pipelined 

data path formed by inserting four pipeline registers to separate 

the data path into five stages. In pipelining, all signals 

associated with a particular instruction must advance through 

the pipeline in unison. We observe that the write back to the 

register file gets the data from Result W and hence, the address 

signal Write Reg has to be pipelined along through the memory 

to remain in sync.  

 

Pipelined data path 

Pipelined Control Unit Control signals for pipelined processor 

are same as the single-cycle processor and hence, control unit 

is the same. The op-code and function fields of the instruction 

are examined in the decode stage by the control unit to 

produce the control signals. They must be pipelined along 

with the data to remain synchronized with instruction. Figure 

2.7 shows the control and data unit for pipelined architecture. 

All the programs running on the MIPS use the same 

instruction set. Instructions indicate both the operations to 

perform and the operands to use. The operands may be read 

from memory, from registers, or from the instruction itself. 

Representation of the instructions in a symbolic format is 

called assembly language. 

 

Pipelined processor with control. 

Instruction operates on operands and these operands can be 

stored in registers, memory, or they can be constants stored in 

the instruction itself. Registers are used for quick access to 

operand but they hold relatively a small amount of data. 

Additional data can be stored in a large data memory, which 

can be relatively slow. MIPS is a 32-bit architecture because 

operands are 32-bit data. 

V. SIMULATIONS AND RESULTS 

In this chapter we are looking into the performance results 

using Xilinx ISE and XST Synthesis tools. The register 

transfer level (RTL) description of the micro-architecture is 

designed and simulated in VHDL using Xilinx ISE design suit 

and basic functionality is verified using the assembly codes.  

VI. CONCLUSION AND FUTURE WORK 

In this paper we demonstrate quad fixed point arithmetic 

processor with 32 bit data processing capability is 

implemented. Quad Fixed Point 32-bit Arithmetic Core 

implements a full customizable arithmetic core using the 

Quad Fixed Point 32-bit. Available arithmetic operations are 

easily configured by an generic flag. Benefits are much less 

area requirements lesser pipeline depth and higher speed 

compared to an FPU at the cost that the number range is 

limited from + - 2^(-24)to2^29.  

The processor for this paper is built from the pipelined MIPS 

processor micro-architecture and is initially designed in 

VHDL and verified. Since the real number representation on 

the processor is fixed-point, the VHDL simulations are further 

modified with fixed-point library. The required optimization 

in the MIPS pipelined processor to support the wireless 

communication applications are studied in detail. The MIPS 

processor ALU is enhanced to support real numbers using 

fixed point arithmetic. Addition, subtraction, multiplications, 

and inversion are the listed operations to achieve ALU 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VI, Issue X, October 2017 | ISSN 2278-2540 

 

www.ijltemas.in Page 45 
 

algorithms. Block wise method of implementation is 

employed for addition, subtraction, multiplication. 

Performance of Design are compared with fixed-point other 

simulation results. Fixed-point ALU using Newton-Raphson 

division and block wise analytical inversion algorithms 

achieve precession error in the range 10-5. The design is 

further synthesized and results indicate the max frequency of 

101 MHz. Load word (lw) instruction is used to fetch the data 

into register file, which is the slowest instruction. Loading the 

back-to-back data from concurrent memory locations into the 

register file using a single new instruction is another 

suggested scope for improvement. 

REFERENCES 

[1]. Accuracy-aware processor customisation for fixed-point 

arithmetic Shervin Vakili ✉, J.M. Pierre Langlois, Guy Bois IET 

Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11 
[2]. J. Kurzak and J. Dongarra, "Implementation of mixed precision in 

solving systems of linear equations on the Cell processor: 

Research Articles," Concurr. Comput. : Pract. Exper., vol. 19, pp. 
1371-1385, 2007. 

[3]. J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. 

Dongarra, "Exploiting the performance of 32 bit floating point 
arithmetic in obtaining 64 bit accuracy (revisiting iterative 

refinement for linear systems)," presented at the Proceedings of 

the 2006 ACM/IEEE conference on Supercomputing, Tampa, 
Florida, 2006. 

[4]. J. Lee and G. D. Peterson, "Iterative Refinement on FPGAs,"in 

Application Accelerators in High-Performance Computing 
(SAAHPC), 2011 Symposium on, 2011, pp. 8-13. 

[5]. A. R. Lopes, A. Shahzad, G. A. Constantinides, and E. 

C.Kerrigan, "More flops or more precision? Accuracy 
parameterizable linear equation solvers for model predictive 

control," in IEEE Symposium on Field Programmable Custom 

Computing Machines, Napa, California, 2009. 
[6].  J. Sun, G. D. Peterson, and O. O. Storaasli, "High-Performance 

Mixed-Precision Linear Solver for FPGAs,"IEEE Trans. Comput., 

vol. 57, pp. 1614-1623, 2008. 
[7]. Yiannacouras, P., Steffan, J.G., Rose, J.: ‘Exploration and 

customization of FPGA-based soft processors’, IEEE Trans. 

Comput.-Aided Design Int. Circuits Syst., 2007, 26, (2), pp. 266–
277 

[8]. Mishra, P., Dutt, N.: ‘Architecture description languages for 

programmable embedded systems’, IEE Proc. Comput. Digit. 
Tech., 2005, 152, (3), pp. 285–297 

[9]. Lee, D.U., Gaffar, A.A., Cheung, R.C.C., Mencer, O., Luk, W., 

Constantinides, G. A.: ‘Accuracy-guaranteed bit-width 
optimization’, IEEE Trans. Comput.-Aided Design Integr. Circuits 

Syst., 2006, 25, (10), pp. 1990–2000 

[10]. Yu, P., Radecka, K., Zilic, Z.: ‘An efficient method to perform 
range analysis for DSP circuits’. Int. Conf. on Electronics, 

Circuits, and Systems (ICECS), December 2010, pp. 855–858 

[11]. Vakili, S., Langlois, J.M.P., Bois, G.: ‘Customised soft processor 
design: a compromise between architecture description languages 

and parameterisable processors’, IET Comput. Digit. Tech., 2013, 

7, (3), pp. 122–131 
[12]. Cong, J., Gururaj, K., Liu, B., et al.: ‘Evaluation of static analysis 

techniques for fixed-point precision optimization’. IEEE Symp. on 
Field Programmable Custom Computing Machines, 2009, pp. 

231–234. 

[13]. Le Gal, B., Casseau, E.: ‘Word-length aware DSP hardware design 
flow based on high-level synthesis’, J. Signal Process. Syst., 2011, 

62, (3), pp. 341–357. 

[14].  Menard, D., Herve, N., Sentieys, O., Nguyen, H.N.: ‘High-Level 
synthesis under fixed-point accuracy constraint’, J. Electr. 

Comput. Eng., 2012, pp.  

[15]. Vakili, S., Langlois, J.M.P., Bois, G.: ‘Finite-precision error 
modeling using affine arithmetic’. IEEE Int. Conf. on Acoustics, 

Speech and Signal Processing (ICASSP), May 2013, pp. 2591–

2595. 

 

 


