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Abstract: In this work, heat transfer problems that have 

Radiation boundary condition are addressed with a unique BEM 

procedure. To address this, adaptive shape functions are defined 

on the nodes in contrast to the standard BEM procedure. The 

shape function are expandable to solve the complex mathematical 

problems that arise in the solution of the equations.  The solution 

developed using the adaptive node shape functions are compared 

with that of the conventional node basis shape function. The 

shape functions yield comparable results with conventional node 

basis shape function by reducing the computational time. Results 

are plotted for several mesh sizes and the convergence study is 

also made. Effort is made to improve the accuracy of the solution. 

Finally, important conclusions are drawn and future scope is 

defined. 
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I INTRODUCTION 

he Boundary Element Method [BEM] or the Boundary

Integral Equations [BIE] are popularly used to solve the

exterior or open region problems due to their capability of 

encompassing the radiation boundary condition into Green’s 

function. The problem with the exterior problem is, in order to 

impose the radiation boundary condition on the boundary of 

the problem domain, the space surrounding the object need to 

be discretized as large as possible. The solution time becomes 

enormously high as the number of discretization elements 

increases. Therefore it becomes difficult to solve such 

problems as the quantity of the elements grows. 

Problems can be solved using BEM by discretizing only the 

surface of the object instead of discretizing the whole space 

around the object.  For the surface of the object, boundary 

conditions such as constant temperature boundary conditions, 

heat flux boundary conditions etc. can be applied and the 

radiation boundary conditions is not required, as the problem 

formulation itself takes care of it in the form of the Green’s 

function.  

Selection of shape function play a critical role in obtaining the 

accurate solution. In the BEM or BIE procedure, the shape 

functions are referred as basis functions. One has flexibility to 

define the basis functions on any of the geometrical entities. 

Several geometric entities are formed when a surface of an 

object is discretized into triangles. These entities are triangular 

patches or faces, edges and nodes. The triangular patch 

modeling for a closed surface results in certain number of 

geometric entities. If Ne is the number of edges created on the 

closed surface of the object, then it will have the number of 

faces equal to 2Ne/3 and number of nodes equal to (Ne/3) +2. 

That means, 

Nf = 2Ne/3 and (1) 

Nn = (Ne/3) + 2  (2) 

The BEM solution offers flexibility so that one can define the 

basis function on any of the geometric entity type. Edge, face 

and node type’s basis functions are the basis functions defined 

on edge, face and node respectively.  After solving the integral 

equations numerically, the resulting matrices are in the sizes of 

Nn × Nn, Nf × Nf , and Ne × Ne respectively for the node type, 

face type and edge type basis functions. For example, an object 

of surface discretized into 6000 edges, then it results in 4000 

faces and 2002 nodes. That means matrices are 6000 × 6000 

for edge type, 4000 × 4000 for face type and 2002 × 2002 for 

node type basis functions. Therefore computational complexity 

of solving edge type and face type basis function is very high 

as compared to solving it using node type basis function.  

In this research an attempt has been made to solve the thermal 

problem with another set of basis functions that is an extension 

of node type basis functions by Raghu Kumar at al. [1]. These 

new basis functions are called adaptive basis functions. These 

functions are not used in the solution of the thermal problems; 

but are widely used in electromagnetic and acoustic scattering 

problems. Adaptive basis function was first introduced by 

Chandrasekhar [3,4] and S.M Rao at al. [5,6] In this work, an 

attempt has been made to extend the adaptive node basis 

functions to solve the radiation boundary condition thermal 

problems. 

II BEM PROCEDURE 

The resulting matrix obtained after numerical solution of 

integral equations, has to be solved by any linear equation 

solvers when node type basis functions are used. 

If the resulting linear equation is  

ZX = Y,  (3) 

T 
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Then X can be found by 

X = Z
-1

Y (4) 

Where iterative methods are used to obtain the inverse of the 

matrix [Z] 

If the Nn is the size of the matrix [Z], then the complexity in 

solving the matrix [Z] is in the order of , which is big as 

compared to the size of the matrix. The BEM solution results 

in a full matrix instead of a sparse matrix or diagonal matrix.  

In this article, attempt is made to generate the diagonal matrix 

of matrix [Z] by defining the basis functions on the nodes. But 

each of these basis functions are not defined on each node in 

isolation, but each basis function is defined on a set of nodes 

so that the resulting values in the matrix [Z] are always 

diagonal; and off diagonal elements are either zero or near 

zero. 

By defining the basis functions spanning over several nodes 

and by assigning appropriate weights, the total effect on any 

other node can be reduced to zero. Thus producing a null field. 

This type of basis function is known as adaptive basis function. 

III DEVELOPMENT OF ADAPTIVE BASIS FUNCTIONS 

Consider a cluster of nodes and let adaptive basis function to 

be defined on main node ni. Six nodes are surrounding the 

main node and have their own node type basis functions. 

Boundary type of adaptive basis function is indicated in red 

color in Fig 1. Let there are N basis functions in the cluster and 

each node type basis function associated with weight is 

designated as Nnn ,......,3,2,1,  . 

Let there are Nn nodes on the surface of the object that resulted 

from triangular patch modeling, and when choosing the 

number of basis functions in the cluster, there is no limit on the 

quantity, but it should be less than that of total number of node 

basis functions on the surface. Null field is produced when 

whole adaptive basis function is tested on any node outside the 

cluster. It is not necessary that all the nodes chosen for testing 

need to be chosen from outside the cluster. The testing node 

should not be the main node and it can be even well within the 

cluster.  

The number of testing nodes to be chosen either equal to or 

greater than the number of nodes in the cluster in order to find 

the weights in the cluster. If the number of nodes in the cluster 

is equal to number of testing nodes, it results in exact solution 

for weights. It the number of testing nodes is greater than 

cluster nodes, it results in an over determined system of linear 

equations and one gets appropriate values for the weights that 

satisfies all the linear equations. 

Figure 1: Adaptive Basis Function on a Node 

Weights can be evaluated using the below procedure: 

Let main node is surrounded by N number of nodes in the 

cluster, then total N+1 number of nodes are there in the cluster. 

Let there be N weights associated to each of the surrounding 

nodes designated by Nnn ,....,3,2,1,  which are to be 

determined. Number of testing points to be at least N, since 

there are N number of weights to be determined. Let N=6, then 

nodes are designated as 21123 ,,,,  iiiiii nandnnnnn . 

The designations given above are arbitrary. When tested on the 

number of nodes Nn, it results in the following set of linear 

equations. 
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This can be expressed in the matrix form as 

    bB  (5)



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 
Volume VI, Issue II, February 2017 | ISSN 2278-2540 

www.ijltemas.in Page 49 

Where, 
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The Eq. 8 need to be solved to get the values of the weights. 

The elements of [B] and {b} can be computed using the 

normal node type basis functions. The equation is an over 

determined system of linear equations and least square 

technique can be used to calculate the weights vector {Ʌ} 

After calculating the weights λi,n, the i
th

  basis function can be

constructed as  





N

n

nniii ffF
1

,    (9) 

It is possible to produce null field on every node except at i
th

 

node by using Fi as the adaptive node basis function. Hence, 

except the diagonal term, it produces whole i
th

 column of [Z]-

matrix as zero, or near zero. For each node, considering it as a 

main node, the adaptive basis function need to be constructed, 

i.e. Fi, i = 1, 2,….Nn has to be constructed and to calculate 

matrix [Z], the corresponding elements of matrix [Z] should be 

determined. After turning all the elements that are less than 

threshold value to zero, the resulting Matrix [Z] is a diagonal 

matrix. Since the matrix [Z] is a diagonal matrix the [Z]
-1

 can 

be easily calculated. 

The solution may or may not be accurate enough, once the 

solution {X} is obtained from [Z]
-1

 × {Y}. The obtained 

solution may not be accurate if the number of nodes in the 

cluster is small. This is due to the reason that the off diagonal 

elements in the [Z] may be higher than the threshold value and 

hence may be a true diagonal matrix. Higher the number of 

nodes in the cluster, lower the value of the off diagonal 

elements in the matrix [Z]. When the number of nodes in the 

cluster is small, there are two ways to get an accurate solution 

in those cases. They are: 

I. Increase the number of nodes in the cluster, but this

increases the computational time. It can be considered

as a good number if the number of nodes in the cluster

are higher than ~ 12% of total nodes on the surface of

the object.

II. To produce accurate and a faster solution, use the

solution obtained from the small number of nodes in

the cluster as an initial guess to solve the independent

node type basis function linear equation [Z]{X} = {Y}.

Features of Adaptive Node type basis functions: 

The significant features of the adaptive node type basis 

functions are: 

1. The [Z] matrix is only diagonal and elements are

stored diagonally and hence the whole matrix need

not be stored.

2. The computational time required to solve the ZX = Y

is totally eliminated.

3. Only the N number of  coefficients need to be

stored for each node.

4. The nodes for the cluster need not be adjacent to the

main node.

5. All the nodes for the cluster need not be physically

present inside a boundary of the adaptive basis

function.

6. The obtained solution may not be accurate incase

number of nodes in the cluster is less than 12 %; but

this can be used to solve the independent node type

basis function solution as an initial guess. Still

additionally [Z] matrix of the independent node type

basis function solution need to be stored, but it is still

worth storing additional data when benefit in the

computational time is considered.

7. The time required to fill the [Z] matrix is an order less

than that required to invert it. The operations required

to fill a matrix for an object having Nn is Nn
2
 and to

invert, it requires Nn
3
.  With the usage of the adaptive

node type basis functions, the number of operations

required to invert the [Z] matrix is totally eliminated

and hence Nn
3 
is saved. Therefore the solution is faster

than the independent node type basis function.

8. If the solution of the [Z] matrix that is based on the

adaptive node type basis function is used as an initial
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guess to solve the independent node type basis 

function, one may have to additionally solve the 

linear system of equations few times, which is still 

worth doing when compared with the benefit one gets 

since the inversion of [Z] matrix is totally eliminated. 

IV NUMERICAL RESULTS 

In this section, numerical results are presented for four cases of 

the spheres. The sphere of radius is modeled with 4 sizes of the 

mesh using triangular patch modeling. The temperature 

distributions are computed using the BEM solution with node 

basis functions and node based adaptive basis functions. Four 

different temperatures are specified on the surface of the 

sphere for four different cases. 

Table 1: Model discretization using triangular patch modeling, Number of 

basis functions in the cluster and Number of iterations for each model to 

improve accuracy 

Model 

Name 
Nodes Faces Edges 

Number of basis functions 

in the cluster 

sp10X10 92 180 270 5 7 11 15 19 

sp12X12 134 264 396 5 11 17 21 27 

sp15X15 212 420 630 9 17 25 35 43 

sp20X20 382 760 1140 15 32 47 61 77 

 
Number of iterations 20 16 12 8 4 

Table 1 shows the different models used in this work for 

testing the solution. The models vary from just 92 nodes to 382 

nodes on the surface. Since the basis functions are defined on 

the nodes, the sizes of the matrices are 92×92, 134×134, 

212×212 and 382×382 respectively for the cases of sp10×10, 

sp12×12, sp15×15 and sp20×20. These are the sizes of the 

matrices that will result if the basis functions are defined only 

on one node. In this article, adaptive basis functions results are 

compared with results of single node basis functions. 

Table 1 shows the number of basis functions defined in the 

cluster in various simulations. The number of basis functions 

have to be chosen to be the nearest odd number that is close to 

4%, 8%, 12%, 16% and 20% of the total number of nodes in 

the surface. These simulations are run in order to assess the 

improvement in the solution when the number of basis 

functions are increased in the cluster. 

The solution obtained using certain number of basis functions 

may or may not be accurate enough and will definitely have 

some deviation from the solution obtained using the single 

node basis functions. Hence this deviation needs to be bridged. 

The accuracy of the solution can be improved either by 

increasing the  number of basis functions in the cluster or by 

using the solution obtained from the adaptive basis functions 

as the seed solution to the iterative solution of the single node 

basis function solution. 

The number of iterations used to get faster and accurate 

solution is shown in Table 1. Higher the number of basis 

functions in the cluster, lower the number of iterations required 

to get the accurate solutions. Conversely, lower the number of 

basis functions used in the definition of the adaptive basis 

function, higher the deviation it will have from the accurate 

solution, and hence higher the number of iterations are 

required to improve the accuracy. 

Fig 2 shows the distribution of temperature for a model 

sp10×10 up to distance of 10m from the surface of the sphere. 

It can be seen from the plot as the number of basis functions 

increase, the solution also improves its accuracy. 

In Fig 2, single node basis functions are compared with 

adaptive basis functions results. 5basis_20itr model indicates, 

5 basis functions are chosen into cluster to define the adaptive 

basis functions and 20 iterations are used to solve the single 

node basis function solution with the adaptive basis function 

solution. Similarly, other models also indicate the number of 

basis functions in the cluster and the number of iterations used. 

By observing the graph, 11 basis functions and 12 iterations 

are the optimum combination of basis function iterations for 

sp10×10 model in the prediction of temperature on the surface 

of the sphere. The optimum combination at a distance of 1m 

and 2m is 19 basis functions with just 4 iterations.  

Figure 2: Temperature distributions at different distances from the surface of 

the sphere (model sp10×10) 

In Fig 3, the error in the prediction of temperatures by adaptive 

basis functions with respect to single node basis functions are 

plotted. The results are plotted for a model of sp10×10. When 

a temperature of 500 °C is specified on the surface of the 

sphere, it can be seen from the Fig 6.3 that when 11 basis 

functions are used in the cluster, the error is very less for the 

temperature prediction on the surface of the sphere. The error 

is low at a distance of 1m and 2m from the surface of the 

sphere, when the 19 basis functions are used in the cluster.  
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Figure 3: Distribution of error in temperature predictions at different distances 

from the surface of the sphere (model sp10×10) 

Fig 4 shows the distribution of temperature for a model 

sp12×12 up to distance of 10m from the surface of the sphere.  

By observing the Fig 4, the model with 5 basis functions and 4 

iterations are the optimum combination of basis function-

iterations that are predicted at temperature of 486 °C on the 

surface of the sphere for the sp12×12 model. The optimum 

combination at distances of 1m and 2m are 27 basis functions 

with 4 iterations and 17 basis functions with 12 iterations 

respectively.  

Figure 4 shows temperature distribution for a temperature, 

defined on the surface of the sphere when the sphere is 

approximated with triangular mesh with model sp12×12, up to 

a distance of 10m from the surface of the sphere. There is good 

agreement of the prediction of temperatures using the adaptive 

basis functions when compared with the single node solution. 

There is slight drop in the temperature by 2.4 °C on the surface 

of the temperature when 5 basis functions are used in the 

cluster. At a distance of 1m from the surface of the sphere, the 

drop is 3.7 °C, but the drop decreases thereafter. 

In Fig. 5, the errors are plotted for the temperature predictions 

by adaptive basis functions with respect to the results obtained 

using single node basis functions. Again, the results are shown 

for a model of sp12×12 for a temperature definition of 500 °C 

on the surface of the sphere. It can be observed from the Fig. 5 

that on the surface of the sphere, the maximum error is 

produced by 21 basis functions model, and 27 basis functions 

model the next highest. The lowest error is produced by 5 basis 

functions model and 17 basis functions model. At a distance of 

1m from the surface of the sphere, the 5 basis functions model 

and 17 basis functions model produces highest error. As the 

distance from the surface increases, the error falls to less than 

1 °C.  

Figure 4: Temperature distributions at different distances from the surface of 

the sphere (model sp12×12)

Figure 5: Distribution of error in temperature predictions at different distances 

from the surface of the sphere (model sp12×12) 

Figure 6: Distribution of error in temperature predictions at different distances 
from the surface of the sphere (model sp15×15) 

Error is low when 
12 % nodes are 

increased in the 

cluster nodes 

Error is low when 12 % and 16 % 

nodes are increased in the cluster 
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Fig 6 shows the distribution of temperature for a model 

sp15×15 up to distance of 10m from the surface of the sphere.  

In Fig 6, it is observed that at a distance of 1m and 2m from 

the surface of the sphere, the optimum model that produced the 

closest result with respect to the single node basis function 

solution is 25basis_12itr. On the surface of the sphere and at a 

distance of 3m from the surface of the sphere, model 

35basis_8itr has given best results. 

Fig 7 shows the error in the prediction of temperature at a 

distance up to 10m from the surface of the sphere for sp15×15 

model. The model 25basis_12itr has performed best at 1m and 

2m from the surface of the sphere and 35basis_8itr performed 

best at 0m and 3m from the surface. Overall, the 25basis_12itr 

and 35basis_8itr has performed well at many locations than the 

other models.  

Figure 7: Distribution of error in temperature predictions at different distances 

from the surface of the sphere (model sp15×15)

Figure 8: Distribution of error in temperature predictions at different distances 

from the surface of the sphere (model sp20×20) 

Figs. 8 and 9 show the distributions of temperature and the 

associated errors in the predictions respectively for the model 

sp20×20 when the temperature of 500 °C is defined on the 

surface of the sphere. The lowest error is produced by 

47basis_12itr basis functions model and has performed well at 

many locations than the other models.  

Figure 9: Distribution of error in temperature predictions at different distances 
from the surface of the sphere (model sp20×20) 

V. CONCLUSION

In this work, Adaptive basis function is defined on the standard 

BEM solution procedure in contrast to using the regular basis 

functions used in FEM/BEM procedures. The advantages of 

following such procedure are explained. With the adaptive 

basis function, only few iterations are required to solve the 

problem and hence it is much faster than solving a full matrix. 

It is proven that the results predicted by the adaptive basis 

functions match well with that of the single node basis 

functions. In this article, effort is made to improve the 

accuracy of the solution by increasing number of nodes in the 

cluster. Different combinations are analyzed by changing the 

number of nodes and iterations. Result will be accurate if the 

number of nodes in the cluster are higher than 12 % of total 

number of nodes on the surface of the object.  

Model 
Combination 

Optimum-1 Optimum-2 Recommended 

sp10×10 11basis_12itr 19basis_8itr 11basis_12itr 

sp12×12 5basis_20itr 17basis_12itr 17basis_12itr 

sp15×15 25basis_12itr 35basis_8itr 25basis_12itr 

sp20×20 47basis_12itr 77basis_4itr 47basis_12itr 

*Recommended no. of nodes is 12 % higher than total nodes on the surface of the object

Error is low when 12 % and 16 % 

nodes are increased in the cluster 

Error is low when 12 % nodes 

are increased in the cluster nodes 
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