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Abstract: -In this paper, an alternative approach to the Wolfe’s
method for Quadratic Programming is suggested. Here we
proposed a new approach based on the iterative procedure for
the solution of a Quadratic Programming Problem by Wolfe’s
modified simplex method. The method sometimes involves less or
at the most an equal number of iteration as compared to
computational procedure for solving NLPP. We observed that
the rule of selecting pivot vector at initial stage and thereby for
some NLPP it takes more number of iteration to achieve
optimality. Here at the initial step we choose the pivot vector on
the basis of new rules described below. This powerful technique
is better understood by resolving a cycling problem.

Key Words And Phrases: Optimum solution, Wolfe’s method,
Quadratic Programming Problem.

I. INTRODUCTION

uadratic Programming Problem is concern with the Non-

linear Programming Problem (NLPP) of maximizing (or
minimizing) the quadratic objective function subject to a set
of linear inequality constraints.

In General Quadratic Programming Problem (GQPP) is
written in the form:

n 1 hn
o M= DX S 2 Y kX Xk
17 JK2
Maximize ) 2 k1

n

Subject  to  constraints: jz_llaij Xj< Bi ,
i=12,....... ,m

and Xj =0 j=12...... N

where 7 jk = ¥kj foralljandk, andalso Bj 20

Philip Wolfe (1959) has given algorithm which based on
fairly simple modification of simplex method and converges
in a finite number of iterations. Terlaky proposed an
algorithm which does not require the enlargement of the basic
table as Frank-Wolfe (1956) method does. Terlaky’s
algorithm is active set method which starts from a primal

feasible solution construct dual feasible solution which is
complementary to the primal feasible solution. But here we
proposed a new approach based on the iterative procedure for
the solution of a Quadratic Programming Problem by Wolfe’s
modified simplex method.

n n

il Xi X
Let the Quadratic form Z Z_:yjk 17K be negative

semi-definite.

The New approach to Wolfe modified simplex Algorithm
to solve the above QPP is stated below:

Rule 1: Introduce the slack variable P.2 in the
corresponding ith constraint to convert the inequality
constraint into  equations, where1<1<m. and

introduce P2m+j in the jth

constraint, 1< j<n..

non-negatively

Rule 2: Construct the Lagrangian function

L(x,P,2)=M - %41-
j-1

n n
{Zaijxj -Bi+ HZ} Zﬂ«mﬂ'(— Xj + P2m+i)
j=1 j=1

Differentiate L(X, P, A) partially with respect to the

component x, P and A equate the first order
derivative equal to zero. Derive the Kuhn-Tucker
condition from the resulting equations.

Rule 3: Introduce the non-negative artificial variable 7 j,

j=12,............ ,N. in the Kuhn-Tucker conditions
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n m
2V jkX — 2 Aicij + Amyj +7j=0
k=1 i=1
for J =12,....... N,
Construct an objective
function M’ =71 +770 +........ +7n .

Rule 4: Obtain an initial basic feasible solution to LPP:-

Minimize M" =11 + 772 +....... +17n
Subject to constraints:-

ZVJka_Z/%aquﬂvmﬂJfﬂj 7j .

k=1 i=1

1=12,.......... ,N

n

2t =Bj  i=1,2,..... ,m

j=1
and _] =12,cccnn.n.. , N.

Xj20 j=12..... ,N+m

2j =0 ] =212,........... ,nN+m
7j20 j=12,........ ,m
Above modification states that A J is not permitted
to became a basic variable whenever Xj is already
a basic variable and vice verse for
1=12,........... ,N+m

This ensures ljxj =0 for each value of j, when

optimal solution to this problem is the desired
optimal solution to the original QPP.

Rule 5: Obtain an optimum solution to the LPP in above
mentioned rule by using new technique for determine
the pivot basic vector by choosing maximum value of

Za”, where Za

corresponding  column the

¥j given by wi=
the sum of
eachZj —Cj.

Let it be forsome J =K ,hence Yk enter into the

basis. Select the outgoing vector by mln( yB' J , let
ik
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it be for some i =T .hence Yrk the pivot element.

If l//j is same for two or more vectors then the

vector with positive Zj —Cj enters the basis.
If all zZ,—-C, =0,

obtained.

the optimum solution is

The optimal solution must satisfy feasibility condition
that Z*=XCgXg=0 and it should satisfy restriction on
signs of Lagrange’s multipliers.

Rule 6: The optimum solution obtained in above mentioned
rule is an optimum solution to the given QPP.
Il. STATEMENT OF THE PROBLEM

In what follows we shall illustrate the problem where the
iterations are less (by our method) than the solution obtained
by existing method.

Use Alternative Approach To Solve The Following QPP:

. e 2
Example 1: Maximize z = 2x; + 3x2 — 2X{

Subject to the constraints: X1 +4Xp < 4
X1 + X =2

X, ., X2 =0

I11. SOLUTION OF THE PROBLEM

Convert the inequality constraints into equations by

introducing slack variable P12 and P22 respectively, also

introduce P32 , P42 in X1 20 X2 20 to convert them into

equations.
Maximize: M = 2xg + 3xp — 2X7
Subject to the constraints: x; + 4x + PZ = 4
X1 + Xo + F’22 =2
—x +P§ =

—x2+P42:0

where Plz,PZZ,P32,P42 are slack variables.

Construct the Lagrangian function:

L=L(X,%X2,P.,P>,P3, |:’4,/11,/12,@3,44)
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=12x +3%p -2 2 -4 x1+4x2+P2—4 ) x1+x2+P2—2
ol 1 2

—/’L3(X1 —+ P32)—ﬂ4(— Xo + P42)
Derive the Kuhn-Tucker condition from the resulting
equations. Differentiate L(X, P, A) partially with respect to
the component x, P and 2 equate the first order derivative

equal to zero. Derive the Kuhn-Tucker condition from the
resulting equations. Thus we have

oL
= —2-4xg — A —Ap +A3 =0
Px1 1 1 2 3

L
a— =3—4ﬂl—ﬂ,2 +ﬂl =0
ax2

oL
oP
oL
oP>
oL
OoP3
oL
oA
oL
02
oL
03
oL
0Aq

24P =0

—2A5P5 — O

oL
= 2A3P3 =0, —=

—244Py =0
oP, 4r4

:x1+4x2+P12—4:O'
=x1+x2+P22—2=0
=—x1+P32=0’

=Xy +PZ =0

After simplification and necessary manipulations these
yield:

4X1 + 4 +Ap —Agz =2

4% +Ap —Ag =3

X1 +4Xo +P12 =4

X1 — X2 +P22 =2

PP + 22PF + X33 + X4 =0
xl,xz,Plz,Pzz,/li >0

In order to determine the solution to the above simultaneous
equations, we introduce

the artificial variables 771 and 772 (both non-negative) and
construct the dummy
objective function M’ = 771 + 775 .
Then the problem becomes
Minimize M " = 771 + 772
4Xl —|—/11 +/12 —/13 +11 = 2

4X1 +Ap —Ag +1712 =3
X1 +4X2 +X3 =4 (here we replaced P12 by
X3)
X] — X2 + X4 =2 | ( here we replaced
P% by X4 )
X1,X2,X3,X4 =0

m.7n2,4; =0, i =12,34.

The optimum solution to the above LPP shall now be
obtained by the alternate procedure described above in
different rules.

Initial step:
CB YB X B X1 X2 X3 X4 /11 ﬂz Ratio
1 m 2 4 0 0 0 1 1 12
1 Py 3 0 0 0 0 4 1
0 X3 4 1 4 1 0 0 0 4
0 X4 2 1 2 0 1 0 0 2
Z;—C; 5 -4 0 0 0 5 -2
V/J = 6 6 5 2

The above table indicate that max y;corresponds to x; and x, so either x; or x, enters the basis, we can enter X, into the basis and

min ratio corresponds to n; therefore » will leave the basis .
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Step (2): Introduce x; and drop 71
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CB Yg Xg X2 X3 /11 Ao Ratio
0 X 12 0 0 1/4 1/4 -
1 72 3 0 0 4 1 -
0 X3 912 4 1 -1/4 -1/4 /8
0 X4 312 2 0 -1/4 -1/4 Ya
Z; —C;j 0 0 -4 -1
= 6 0 -1 -1
Since the value Wj:6 is most positive, we make x, as the entering vector in the basis and drop X3 .
Step (3): Introduce X, and drop X3
Cp YB X X3 A A2 Ratio
-1 X 1/2 0 1/4 1/4
0 n2 3 0 4 1
0 X2 9/8 1/4 -1/16 -1/16
0 X4 0 -1/2 -1/8 -1/8
z; —c; 0 0 -1/4
Vi= 16/4 5/4

Since the value is ¥ j=16/4 (maximum), we make 1, as the entering vector in the basis and drop 77, .

Step (3): Introduce /11 and drop 775

Cg Yg Xg X3 12
0 X1 5/16 0 3/16

0 PN 3/4 0 1/4
0 X5 59/64 1/4 -3/16
0 X4 5/32 1/2 3/32

z; —cC;j 0 0 0

vij= 0 0 0

. . . 2 2
Since all Zj —Cj >0, an optimum solution has been —X +s5; =0 —X;+s3 =0

reached in three iterations. Therefore optimum solution is

X1 25/16’
M =3.19

L =4x, +6Xy, —2XZ —2X Xy — 2X5
Xo> =59/64 and  maximum

—ﬂl(x1+2x2 +s? —2)—22(—x1+s§)—13(— X +s32)

Example 2:

oL
L —=0=4-4X%—-2X, -4+, =0;
Maximize z =4x, +6X, —2XF —2X; X, —2X5 % 12— At
Subto: X +2X%X, <2, X;,X, =0 oL
L 0=6-2% 4%, — 24+ 13 =0
X|+2%, +88=2; —x;, <0 & —X, <0 2
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oL 4% + 2%, + 4 — A, + A =4
a—=0:>x1+2x2+512—2=0; 1 2t A=t A
< 2X) +4Xy + 24 — Az + A, =6
oL
£=O:>x1+s§:0 X1 +2Xy + X3 =2
Initial step
0 0 0 0 0 0 1 1
Cg YB Xp X1 Xy X3 A Ao A A A
1 A 4 4 2 0 1 -1 0 1 0
1 A, 6 2 4 0 2 0 -1 0 1
0 X3 2 1 2 1 0 0 0 0 0
Since the value is y; =8 (maximum), we make X5 as the entering vector in the basis and drop X3 .
1° Iteration
0 0 0 0 0 0 1 1
Cg YB Xg X X2 X3 A A A3 A A,
A 2 3 0 -1 1 -1 0 1 0
A, 2 0 0 -2 2 0 -1 0 1
X2 1 1/2 1 1/2 0 0 0 0
i 7/2 -5/2 3 -1 -1
Since y; =7/2 maximum x, enters the basis and A, leaves the basis
2" Iteration
0 0 0 0 0 0 1 1
Cg Y8 Xg X X2 X3 % A A3 A Ay
0 Xy 213 1 0 -1/3 1/3 -1/3 0 1/3 0
1 A 2 0 0 -2 2 0 -1 0 1
0 Xy 213 0 1 213 -1/6 1/6 0 -1/6 0
Wi -ve 11/6 -1/6 -1 1/3
Since y; =11/6 maximum 4, enters the basis and A; leaves the basis
3" Iteration
0 0 0 0 0 0 1 1
Cs Y8 XB X X2 X3 A A A3 A Ay
0 Xy 1/3 1 0 0 0 -1/3 1/6 1/3 -1/6
0 M 1 0 0 -1 1 0 -1/2 1 1/2
0 X, 5/6 0 1 112 0 1/6 -1/12 -1/6 7112
z* 0 0 0 0 0 0 0 0
Max z:é Xl:l XZ:E
6 3 6
Example 3: Maximize z =8x; +10x, — XZ — X5
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Subto: 3X; +2X, <6, X;,%X, =0 oL

£ ==0=10-2x, ~ 22 + 4 =0
2
3%, +2X, +s7 =6

, , L 0=3x +2x, +52—6=0
L =8x, +10x, — X& — X5 2% +34 —A, + A =8

_,11(3x1+2x2+sf—6)—/12(—x1+322)_33(_xz+s§) 2% +2 — Az + A, =10, 3% +2X, + X3 =6

oL

al=0:>8—2xl—3ﬂl+ﬂz =0
Initial Table
0 0 0 0 0 0 1 1
Cg YB Xp Xy Xy X3 A A A A A
1 A 8 2 0 0 3 -1 0 1 0
1 A 10 0 2 0 2 0 -1 0 1
0 X3 6 3 2 1 0 0 0 0 0
Vi 5 4 5 -1 -1
Since y; =5 maximum x;enters the basis and A, leaves the basis
1% Iteration
0 0 0 0 0 0 1 1
Cg YB Xg Xy Xy X3 A A A A Ay
1 A 4 0 -4/3 -2/3 3 -1 0 1 0
1 A, 10 0 2 0 2 0 -1 0 1
0 Xy 2 1 213 13 0 0 0 0 0
Vi 213 -1/3 5
Since y; =5 maximum 4, enters the basis and A, leaves the basis
2" Iteration
0 0 0 0 0 0 1 1
Cg YB Xg X Xa X3 A A A A Ay
1 4 413 0 -419 -2/9 1 -1/3 0 1/3 0
1 A, 22/3 0 26/9 4/9 0 213 -1 -2/3 1
0 Xy 2 1 213 1/3 0 0 0 0 0
Vi 28/9 719 1/3 -1 -1/3
Since y; =28/9 maximum, so X, enters the basis and A; leaves the basis
3" Iteration
0 0 0 0 0 0 1 1
Cg ) Xg Xy Xy X3 4 A A A Ay
0 4 32/13 0 0 -2/13 1 -313 213 1 0
0 Xy 33/13 0 1 2/13 0 3/111 9/26 0 1
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0 X 4/13 1 0 313 0 2113 313 0
z* 0 0 0 0 0 0
277 4 33 oL
Max z=—— X=—  X,=— —=0=6-4X%, —4X, — A4, — 24, + A3 =0
13 1713 2713 % 2= P2t

Solution satisfies the optimality condition and restriction on
Lagrangian multipliers. Also by using our modified technique
one iteration is reduced and solution remains intact.

Example 4.
Maximize z =6x, +3X, —4X X, — 2% —3X5

Sub  to X1+ X, <1, 2% +3%X, <4,

X, X5 =0
L—6 2 2
=06X; +3Xy —4X Xy —2X{ —3X5

—ﬂi(xl +X,+87 —1)—12(2x1 +3x, +55 —4)—23(— X +s32)—/14(— X, +s§)

%:O:3—4x1—6x2—21—3/12+/14=0

2
oL
o4
oL

2
=0=X  +X,+s{ —1=0

=0=2% +3X, +52 —4=0

4%, +4X, + 4 +24, — A3+ A =6

A% +6Xo + A4y +34, — A4 + A, =3,
2X; +3X, + X, =4

Initial Table
0 0 0 0 0 0 0 0 1 1
Cg Y8 Xg X X2 X3 X4 % A A3 Ay A Ay
1 A 6 4 4 0 0 1 2 -1 0 1 0
1 A, 3 4 6 0 0 1 3 0 -1 0 1
0 X3 1 1 1 1 0 0 0 0 0 0 0
0 Xy 4 2 3 0 1 0 0 0 0 0 0
Vi 9 8 10 0 0 2 5 -1 -1 0 0
Since y; =10 maximum, so X, enters the basis and A; leaves the basis
1% Iteration
0 0 0 0 0 0 0 0 1 1
Cg YB Xg Xy Xy X3 X4 4 A A A4 A A
1 A 4 413 0 0 0 1/3 0 -1 213 1 0
0 X 1/2 213 1 0 0 1/6 112 0 -1/6 0 1
0 Xq 1/2 1/3 0 1 0 -1/6 -1/2 0 1/6 0 0
0 X4 5/2 0 0 0 1 -112 -312 0 112 0 0
Vi 713 -1/6 -312 -1 716
Since y; =7/3 maximum, so x, enters the basis and x, leaves the basis
2" Iteration
0 0 0 0 0 0 0 0 1 1
Cg YB Xg Xy Xy X3 X4 4 A A3 7 A Ay
1 A 3 0 -2 0 0 0 -1 -1 1 1 -1
0 Xy 3/4 1 312 0 0 1/4 3/4 0 -1/4 0 1/4
0 Xg 1/4 0 -1/2 1 0 -1/4 -3/4 0 1/4 0 -1/4
0 X4 5/2 0 0 0 1 -1/2 -3/2 0 112 0 -1/2
Vi -1 -1/2 512 312 -312
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Since y; =3/2 maximum, so A, enters the basis and x; leaves the basis

3" Iteration

0 0 0 0 0 0 0 0 1 1
Cg Ys Xg X Xy X3 X4 A4 A A3 Ag A A,
1 Al 2 0 0 -4 0 1 2 -1 0 1 0
0 X1 1 1 1 1 0 0 0 0 0 0 0
0 Ay 1 0 2 4 0 1 -3 0 1 0 -1
0 Xy 2 0 1 -2 1 0 0 0 0 0 0
Vi 0 -1 -1 -1

Here there is a tie for max y; and therefore to decide entering vector we refer value of Zj —Cj . Most negative Zj —Cj
corresponds to A, and therefore A, enters the basis and A, leaves the basis.

4™ Iteration

0 0 0 0 0 0 0 0 1 1
Ce Y8 Xg X X2 X3 X4 % A A3 Ay A Ay
0 A, 1 0 0 -2 0 112 1 -112 0 112 0
0 X 1 1 1 1 0 0 0 0 0 0 0
0 Ay 4 0 -2 -2 0 -1/2 0 -312 1 3/2 -1
0 X, 2 0 1 -2 1 0 0 0 0 0 0
z 0 0 0 0 0 0 0 0 0 0 0
Opt. z=4 X, =1 X, =0
Example 5: Maximize Z=2X1+X2—X12 $=O:>2—2x2—221—22,2+/13:0
OXq
Subto: 2X; +3X, <6, 22X +X, <4
oL
2X%, +3X, + 52 =6, oL
trTte L 0= (2% +3%, +52-6)=0
oA,

2%, + Xy +55 =4

oL
—% +s5 =0 —61220:—(2x1+x2+s§—4)=0
—X,+55 =0 2X +24 +24, — A3+ A =2

L=2x + X, — X{ B+ A — Ay + Ay =1

—4(2x1+3x2+sf—6)—/12(2x1+x1+s§—4)—/13(—x1+s32)—/14(—x2+s§) 2% + 3% + X3 =6
2X; +Xo +X,4 =4

Initial Table
0 0 0 0 0 0 0 0 1 1
Csg Y8 Xg X X3 X3 X4 A A A Ag A A,
1 A 2 2 0 0 0 2 2 -1 0 1 0
1 A, 1 0 0 0 0 3 1 0 -1 0 1
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0 X3 6 2 3 1 0 0 0 0 0 0 0
0 X4 4 2 1 0 1 0 0 0 0
v 6 4
Since y; =6 maximum, so X, enters the basis and A, leaves the basis.
1% Iteration
0 0 0 0 0 0 0 0 1 1
Cg YB Xg Xy X3 X3 X4 A4 A A A4 A A
0 X4 1 1 0 0 0 1 1 -1/2 0 112 0
1 A, 1 0 0 0 0 3 1 0 -1 0 1
0 X3 4 0 3 1 0 2 2 1 0 -1/2 0
0 X4 2 0 1 0 1 2 -2 1 0 -112 0
i 4 0 ) 312 -1 -1/2
Since y; =4 maximum, so X, enters the basis and x; leaves the basis
2" Iteration
0 0 0 0 0 0 0 0 1 1
Cg YB Xg X Xy X3 Xy A A A3 A4 A A
0 X1 1 0 0 0 0 1 1 -112 0 0 112
1 A, 1 1 0 0 0 3 1 0 -1 1 0
0 X 4/3 0 1 13 0 -2/4 -2/3 1/3 0 0 -1/4
0 X4 213 0 0 -1/3 1 -4/3 -4/3 213 0 0 -1/6
Vi 0 1/2 0 112 1/2
Since y;j =1/2 maximum, so A, enters the basis and A; leaves the basis
3" Iteration
0 0 0 0 0 0 0 0 1 1
Cg YB Xg X Xa X3 X4 2 A A A4 A A,
0 X 2/3 1 0 0 0 0 2/3 -1/2 113 112 -1/3
0 3 13 0 0 0 0 1 1/3 0 -1/3 0 1/3
0 Xy 14/9 0 1 1/3 0 0 -419 113 -2/9 -1/6 213
0 X4 10/9 0 0 -1/3 1 0 -8/9 213 -419 -1/3 4/3
zZ* 0 0 0 0 0 0 0 0 0 -1 -1
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