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Abstract: -In this paper, an alternative approach to the Wolfe’s 

method for Quadratic Programming is suggested. Here we 

proposed a new approach based on the iterative procedure for 

the solution of a Quadratic Programming Problem by Wolfe’s 

modified simplex method. The method sometimes involves less or 

at the most an equal number of iteration as compared to 

computational procedure for solving NLPP. We observed that 

the rule of selecting pivot vector at initial stage and thereby for 

some NLPP it takes more number of iteration to achieve 

optimality. Here at the initial step we choose the pivot vector on 

the basis of new rules described below.  This powerful technique 

is better understood by resolving a cycling problem. 

Key Words And Phrases: Optimum solution, Wolfe’s method, 

Quadratic Programming Problem.  

I. INTRODUCTION 

uadratic Programming Problem is concern with the Non-

linear Programming Problem (NLPP) of maximizing (or 

minimizing) the quadratic objective function subject to a set 

of linear inequality constraints. 

In General Quadratic Programming Problem (GQPP) is 

written in the form: 

Maximize 
 
 


n

j

n

k
kjjk

n

j
jj xxxM

1 11 2

1


 

 Subject to constraints: 





n

j
ijij x

1


 , 

....,,.........2,1 mi      

 and 0jx ,  ....,,.........2,1 nj                         

where kjjk    for all j and k, and also 0i . 

Philip Wolfe (1959) has given algorithm which based on 

fairly simple modification of simplex method and converges 

in a finite number of iterations. Terlaky proposed an 

algorithm which does not require the enlargement of the basic 

table as Frank-Wolfe (1956) method does. Terlaky’s 

algorithm is active set method which starts from a primal 

feasible solution construct dual feasible solution which is 

complementary to the primal feasible solution. But here we 

proposed a new approach based on the iterative procedure for 

the solution of a Quadratic Programming Problem by Wolfe’s 

modified simplex method. 

Let the Quadratic form 
 
 

n

j

n

k
kjjk xx

1 1


 be negative 

semi-definite. 

The New approach to Wolfe modified simplex Algorithm 

to solve the above QPP is stated below: 

Rule 1: Introduce the slack variable  
2

iP   in the 

corresponding ith constraint to convert the inequality 

constraint into equations, where .1 mi  and 

introduce jmP 
2

 in the jth non-negatively 

constraint, .1 nj  .  

Rule 2: Construct the Lagrangian function 

  



 

















n

j

jmjjm

m

j

n

j
iijiji PxPxMPxL

1

2

1 1

2),,( 

                                            

where  nxxxx ..,,.........2,1                    

 nmPPPP  ..,,.........2,1  

 nm  ..,,.........2,1  

Differentiate ),,( PxL  partially with respect to the 

component x, P and   equate the first order 

derivative equal to zero. Derive the Kuhn-Tucker          

condition from the resulting equations. 

Rule 3: Introduce the non-negative artificial variable j , 

....,,.........2,1 nj   in the Kuhn-Tucker conditions 

Q 
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






m

i
jjmiji

n

k
kjk x

11

0
    

for ....,,.........2,1 nj   

Construct an objective 

function nM   ........21 . 

Rule 4: Obtain an initial basic feasible solution to LPP:- 

Minimize nM   ........21  

Subject to constraints:- 








m

i
jjjmiji

n

k
kjk x

11

 , 

....,,.........2,1 nj   




 
n

j
jinij x

1

 , ....,,.........2,1 mi   

and ....,,.........2,1 nj         

0jx
, ....,,.........2,1 mnj   

0j , ....,,.........2,1 mnj   

0j , ....,,.........2,1 mj   

Above modification states that j  is not permitted 

to became a basic  variable whenever jx
 is already 

a basic variable and vice verse for                        

....,,.........2,1 mnj    

This ensures 0jjx  for each value of j, when 

optimal solution to this  problem is the desired 

optimal solution to the original QPP. 

Rule 5: Obtain an optimum solution to the LPP in above 

mentioned rule by using new technique for determine 

the pivot basic vector by choosing  maximum value of 

j  given by  ijj  ,  where ij is 

the sum of corresponding column to the 

each jj CZ  .  

 Let it be for some kj   , hence ky  enter into the 

              basis. Select the outgoing vector by 













ik

Bi

y

x
min , let  

            it be for some ri  .hence rky  the pivot element. 

 If j is same for two or more vectors then the 

vector with positive jj CZ   enters the basis. 

 If all 0
jj

CZ , the optimum solution is 

obtained.  

The optimal solution must satisfy feasibility condition 

that Z*=ΣCBXB=0 and it should satisfy restriction on 

signs of Lagrange’s multipliers. 

Rule 6: The optimum solution obtained in above mentioned 

rule is an optimum solution to the given QPP.  

II. STATEMENT OF THE PROBLEM 

In what follows we shall illustrate the problem where the 

iterations are less (by our method) than the solution obtained 

by existing method. 

Use Alternative Approach To Solve The Following QPP: 

Example 1: Maximize 2
121 232 xxxz    

Subject to the constraints: 44 21  xx  

                                           221  xx                              

                                           0, 21
xx                                                                                                     

III. SOLUTION OF THE PROBLEM 

Convert the inequality constraints into equations by 

introducing slack variable
2

1P  and 
2

2P  respectively, also 

introduce
2

3P ,
2

4P in 01 x , 02 x  to convert them into 

equations. 

Maximize: 
2
121 232 xxxM    

Subject to the constraints: 44 2
121  Pxx  

                                            22
221  Pxx     

                                  02
31  Px  

                                  02
42  Px  

where 
2
4

2
3

2
2

2
1

,,, PPPP   are slack variables. 

Construct the Lagrangian function: 

   

),,,,,( 4,3,2,1,432121 PPPPxxLL 
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     244232 2
2212

2
1211

2
121  PxxPxxxxx 

 

            2
424

2
313 PxPx    

Derive the Kuhn-Tucker condition from the resulting 

equations. Differentiate ),,( PxL partially with respect to 

the component x, P and   equate the first order derivative 

equal to zero. Derive the Kuhn-Tucker condition from the 

resulting equations. Thus we have 

042 3211
1





x

x

L
 

043 121
2







x

L
 

02 11
1





P

P

L
 ,    

02 22
2





P

P

L
  

02 33
3





P

P

L
 ,       02 44

4





P

P

L
  

044 2
21

1 1





Pxx

L


,  

022
221

2





Pxx

L


 

02
31

3





Px

L

 ,            

02
42

4





Px

L

  

 

After simplification and necessary manipulations these 

yield: 

24 3211  x  

34 421  x  

44 2
121  Pxx  

22
221  Pxx  

04231
2
22

2
11   xxPP  

0,,,, 2
2

2
121 iPPxx   

In order to determine the solution to the above simultaneous 

equations, we introduce  

the artificial variables 1 and 2  (both non-negative) and 

construct the dummy  

objective function 21  M . 

Then the problem becomes 

 Minimize 21  M  

                      24 13211  x  

                      34 2421  x  

        44 321  xxx , ( here we replaced 
2

1P  by 

3x  ) 

                      2421  xxx , ( here we replaced 

2
2P  by 4x  ) 

                      0,,, 4321 xxxx ,     

.4,3,2,1,0,, 21  ii  

The optimum solution to the above LPP shall now be 

obtained by the alternate procedure described above in 

different rules. 

  

Initial step: 

BC  BY  BX  1x  2x  3x  4x  1  2  Ratio 

-1 1  2 4 0 0 0 1 1 1/2 

-1 2  3 0 0 0 0 4 1 --- 

0 3x  4 1 4 1 0 0 0 4 

0 4x  2 1 2 0 1 0 0 2 

jj cz    -5 -4 0 0 0 -5 -2  

j    6 6   5 2  

The above table indicate that max j corresponds to x1 and x2 so either x1  or x2 enters the basis, we can enter x1 into the basis and 

min ratio corresponds to 1  therefore 1 will leave the basis .                          
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Step (2): Introduce x1 and drop 1  

BC  BY  BX  2x  3x  1  2  Ratio 

0 1x  1/2 0 0 1/4 1/4 -- 

-1 2  3 0 0 4 1 -- 

0 3x  9/2 4 1 -1/4 -1/4 9/8 

0 4x  3/2 2 0 -1/4 -1/4 ¾ 

jj cz     0 0 -4 -1  

j    6 0 -1 -1  

Since the value 6j  is most positive, we make x2 as the entering vector in the basis and drop 3x .         

Step (3): Introduce x2 and drop 3x  

BC  BY  BX  3x  1  2  Ratio 

-1 1x  1/2 0 1/4 1/4  

0 2  3 0 4 1  

0 2x  9/8 1/4 -1/16 -1/16  

0 4x  0 -1/2 -1/8 -1/8  

jj cz     0 0 -1/4  

j     16/4 5/4  

Since the value is 4/16j  (maximum), we make 1  as the entering vector in the basis and drop 2 .   

Step (3):  Introduce 1  and drop 2       

BC  BY  BX  3x  2  

0 1x  5/16 0 3/16 

0 1  3/4 0 1/4 

0 2x  59/64 1/4 -3/16 

0 4x  5/32 1/2 3/32 

jj cz    0 0 0 

j   0 0 0 

 

Since all 0 jj cz , an optimum solution has been 

reached in three iterations. Therefore optimum solution is 

16/51 x , 64/592 x   and maximum 

19.3M  

Example 2: 

2
221

2
121 22264 xxxxxxzMaximize 

Sub to : 0,,22 2121  xxxx  

22 2
121  sxx ; 0&0 21  xx  

00 2
32

2
21  sxsx  

2
221

2
121 22264 xxxxxxL   

     2
323

2
212

2
1211 22 sxsxsxx  

 

02440 2121
1





xx

x

L
;  

024260 3121
2





xx

x

L
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0220 2
121

1





sxx

L


;  

00 2
21

2





sx

L


 

424 12121  Axx   

6242 23121  Axx   

22 321  xxx  

 

Initial step 

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

1
 

1A  4
 

4 2 0 1 -1 0 1 0 

1
 

2A  6
 

2 4 0 2 0 -1 0 1 

0
 

3x  2
 

1 2 1 0 0 0 0 0 

 j  7 8  3 1 1   

Since the value is 8j  (maximum), we make 2x  as the entering vector in the basis and drop 3x .   

1
st
 Iteration  

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

1
 

1A  2
 

3 0 -1 1 -1 0 1 0 

1
 

2A  2
 

0 0 -2 2 0 -1 0 1 

0
 

2x  1
 

1/2 1 1/2 0 0 0 0 0 

 j  7/2  -5/2 3 -1 -1   

Since j =7/2 maximum x1 enters the basis and A1 leaves the basis 

2
nd

 Iteration  

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

0
 

1x  2/3
 

1 0 -1/3 1/3 -1/3 0 1/3 0 

1
 

2A  2
 

0 0 -2 2 0 -1 0 1 

0
 

2x  2/3
 

0 1 2/3 -1/6 1/6 0 -1/6 0 

 j    -ve 11/6 -1/6 -1 1/3  

Since j =11/6 maximum 1  enters the basis and A2 leaves the basis 

3
rd

 Iteration  

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

0
 

1x  1/3
 

1 0 0 0 -1/3 1/6 1/3 -1/6 

0
 

1  1
 

0 0 -1 1 0 -1/2 1 1/2 

0
 

2x  5/6
 

0 1 1/2 0 1/6 -1/12 -1/6 7/12 

 Z*  0 0 0 0 0 0 0 0 

6

5

3

1

6

25
21  xxzMax

 

Example 3:  
 

2
2

2
121 108 xxxxzMaximize   
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Sub to : 0,,623 2121  xxxx  

623 2

121
 sxx  

02
21  sx , 02

32  sx  

2
2

2
121 108 xxxxL   

     2

323

2

212

2

1211 623 sxsxsxx    

03280 211
1





x

x

L
 

022100 312
2





x

x

L
 

06230 2
121

1





sxx

L


 

832 1211  Ax   

1022 2311  Ax  , 623 321  xxx  

 

Initial Table 

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

1
 

1A  8
 

2 0 0 3 -1 0 1 0 

1
 

2A  10
 

0 2 0 2 0 -1 0 1 

0
 

3x  6
 

3 2 1 0 0 0 0 0 

 j  5 4  5 -1 -1   

Since j =5 maximum x1enters the basis and A1 leaves the basis 

1
st
 Iteration  

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

1
 

1A  4
 

0 -4/3 -2/3 3 -1 0 1 0 

1
 

2A  10
 

0 2 0 2 0 -1 0 1 

0
 

1x  2
 

1 2/3 1/3 0 0 0 0 0 

 j   2/3 -1/3 5     

Since j =5 maximum 1  enters the basis and A1 leaves the basis 

2
nd

 Iteration  

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

1
 

1  4/3
 

0 -4/9 -2/9 1 -1/3 0 1/3 0 

1
 

2A  22/3
 

0 26/9 4/9 0 2/3 -1 -2/3 1 

0
 

1x  2
 

1 2/3 1/3 0 0 0 0 0 

 j   28/9 7/9  1/3 -1 -1/3  

Since j =28/9 maximum, so x2 enters the basis and A2 leaves the basis 

3
rd

 Iteration  

   0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  1  2  3  1A  2A  

0
 

1  32/13
 

0 0 -2/13 1 -3/13 -2/13 1 0 

0
 

2x  33/13
 

0 1 2/13 0 3/11 9/26 0 1 
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0
 

1x  4/13
 

1 0 3/13 0 -2/13 3/13 0 0 

 Z*  0 0 0 0 0 0 0 0 

13

33

13

4

13

277
21  xxzMax

 

Solution satisfies the optimality condition  and restriction on 

Lagrangian multipliers.  Also by using our modified technique 

one iteration is reduced and solution remains intact. 

Example 4.  

2
2

2
12121 32436 xxxxxxzMaximize 

Sub to : 432,1 2121  xxxx , 

0, 21 xx  

2
2

2
12121 32436 xxxxxxL   

       2
424

2
313

2
2112

2
1211 4321 sxsxsxxsxx  

 

024460 32112
1





xx

x

L
 

036430 42121
2





xx

x

L
 

010 2
121

1





sxx

L


 

04320 2
221

2





sxx

L


 

6244 132121  Axx   

3364 242121  Axx  , 

432 421  xxx  

Initial Table 

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

1
 

1A  6
 

4 4 0 0 1 2 -1 0 1 0 

1
 

2A  3
 

4 6 0 0 1 3 0 -1 0 1 

0
 

3x  1
 

1 1 1 0 0 0 0 0 0 0 

0 4x  4 2
 

3 0
 

1 0 0
 

0
 

0 0 0 

 j 9 8 10 0 0 2 5 -1 -1 0 0 

Since j =10 maximum, so x2 enters the basis and A2 leaves the basis 

1
st
 Iteration  

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

1
 

1A  4
 

4/3 0 0 0 1/3 0 -1 2/3 1 0 

0
 

2x  1/2
 

2/3 1 0 0 1/6 1/2 0 -1/6 0 1 

0
 

3x  1/2
 

1/3 0 1 0 -1/6 -1/2 0 1/6 0 0 

0 4x  5/2 0
 

0 0
 

1 -1/2 -3/2
 

0
 

1/2 0 0 

 j  7/3    -1/6 -3/2 -1 7/6   

Since j =7/3 maximum, so x1 enters the basis and x2 leaves the basis 

2
nd

 Iteration  

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

1
 

1A  3
 

0 -2 0 0 0 -1 -1 1 1 -1 

0
 

1x  3/4
 

1 3/2 0 0 1/4 3/4 0 -1/4 0 1/4 

0
 

3x  1/4
 

0 -1/2 1 0 -1/4 -3/4 0 1/4 0 -1/4 

0 4x  5/2 0
 

0 0
 

1 -1/2 -3/2
 

0
 

1/2 0 -1/2 

 j   -1   -1/2 -5/2  3/2  -3/2 
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Since j =3/2 maximum, so 4 enters the basis and x3 leaves the basis 

3
rd  

Iteration  

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

1
 

1A  2
 

0 0 -4 0 1 2 -1 0 1 0 

0
 

1x  1
 

1 1 1 0 0 0 0 0 0 0 

0
 

4  1
 

0 -2 4 0 -1 -3 0 1 0 -1 

0 4x  2 0
 

1 -2
 

1 0 0
 

0
 

0 0 0 

 j   0 -1  0 -1 -1    

Here there is a tie for max j and therefore to decide entering vector we refer value of jj cz  . Most negative jj cz   

corresponds to 2 and therefore 2 enters the basis and A1 leaves the basis. 

4
th

   Iteration  

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

0
 

2  1
 

0 0 -2 0 1/2 1 -1/2 0 1/2 0 

0
 

1x  1
 

1 1 1 0 0 0 0 0 0 0 

0
 

4  4
 

0 -2 -2 0 -1/2 0 -3/2 1 3/2 -1 

0 4x  2 0
 

1 -2
 

1 0 0
 

0
 

0 0 0 

 Z* 0 0 0 0 0 0 0 0 0 0 0 

014. 21  xxzOpt
 

Example 5: 
2
1212 xxxzMaximize   

Sub to : 42,632 2121  xxxx  

0, 21 xx  

,632 2
121  sxx  

42 2
221  sxx  

02
31  sx  

02
42  sx  

2
1212 xxxL   

       2
424

2
313

2
2112

2
1211 42632 sxsxsxxsxx    

 

022220 3212
1





x

x

L
 

0310 421
2







x

L
 

  06320 2
121

2





sxx

L


 

  0420 2
221

2





sxx

L


 

2222 13211  Ax   

13 2421  A  

632 321  xxx  

42 421  xxx  

Initial Table 

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

1
 

1A  2
 

2 0 0 0 2 2 -1 0 1 0 

1
 

2A  1
 

0 0 0 0 3 1 0 -1 0 1 
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0
 

3x  6
 

2 3 1 0 0 0 0 0 0 0 

0 4x  4 2
 

1 0
 

1 0 0
 

0
 

0 0 0 

 j  6 4   5 3     

Since j =6 maximum, so x1 enters the basis and A1 leaves the basis. 

1
st
 Iteration  

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

0
 

1x  1
 

1 0 0 0 1 1 -1/2 0 1/2 0 

1
 

2A  1
 

0 0 0 0 3 1 0 -1 0 1 

0
 

3x  4
 

0 3 1 0 -2 -2 1 0 -1/2 0 

0 4x  2 0
 

1 0
 

1 -2 -2
 

1
 

0 -1/2 0 

 j   4   0 -2 3/2 -1 -1/2  

Since j =4 maximum, so x2 enters the basis and x3 leaves the basis 

2
nd

 Iteration  

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

0
 

1x  1
 

0 0 0 0 1 1 -1/2 0 0 1/2 

1
 

2A  1
 

1 0 0 0 3 1 0 -1 1 0 

0
 

2x  4/3
 

0 1 1/3 0 -2/4 -2/3 1/3 0 0 -1/4 

0 4x  2/3 0
 

0 -1/3
 

1 -4/3 -4/3
 

2/3
 

0 0 -1/6 

 j    0  1/2 0 1/2  1/2  

Since j =1/2 maximum, so 1 enters the basis and A2 leaves the basis 

3
rd  

Iteration  

   0 0 0 0 0 0 0 0 1 1 

Bc  By  Bx  1x  2x  3x  4x
 1  2  3  4  1A  2A  

0
 

1x  2/3
 

1 0 0 0 0 2/3 -1/2 1/3 1/2 -1/3 

0
 

1  1/3
 

0 0 0 0 1 1/3 0 -1/3 0 1/3 

0
 

2x  14/9
 

0 1 1/3 0 0 -4/9 1/3 -2/9 -1/6 2/3 

0 4x  10/9 0
 

0 -1/3
 

1 0 -8/9
 

2/3
 

-4/9 -1/3 4/3 

 Z* 0 0 0 0 0 0 0 0 0 -1 -1 

 

9

14

3

2

9

22
. 21  xxzOpt

. 

IV. CONCLUSION 

It is seen that the existing method is more inconvenient in 

handling the degeneracy and cycling problems because here 

the choice of the vectors, entering and outgoing, play an 

important role. Here we observed that the optimum solution 

obtained in three iterations by our modified technique, where 

as Wolfe’s simplex method took five iterations. Hence our 

technique gives efficiency in result as compared to other 

method in less iteration.   Hence the number of iterations 

required is reduced by our methodology. Also we require less 

time to simplify Numerical Problems.  
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