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Abstract- This paper is concerned with transient thermoelastic 

problem in which we need to determine the temperature 

distribution, displacement function and thermal stresses of a 

semi- infinite rectangular slab when the boundary conditions are 

known. Integral transform techniques are used to obtain the 

solution of the problem. 
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I. INTRODUCTION 

hobragade et al.  [1-5] have investigated temperature 

distribution , displacement function and stresses of a thin 

rectangular plate and  Khobragade et al. [9, 10] have 

established displacement function, temperature distribution 

and stresses of a semi- infinite rectangular beam and slab 

respectively. 

In this paper, an attempt has been made to determine the 

temperature distribution, displacement function and thermal 

stresses of a semi infinite rectangular slab with internal heat 

generation occupying the region 

 yaxD 0,0:  having known boundary 

conditions. Here finite Fourier sine  transforms and Fourier 

cosine transform techniques have been used to find the 

solution of the problem. 

II. FORMULATION OF THE PROBLEM 

A thin rectangular plate occupying the 

space  yaxD 0,0:   is considered. The initial 

temperature of the plate is kept at zero. The plate is at zero 

temperature at and axandx  0 where as the plate 

is subjected to arbitrary heat supply at y and y Here the plate 

is assumed sufficiently thin and considered free from traction. 

Since the slab is in a plane stress state without bending. Airy 

stress function method is applicable to the analytical 

development of the thermoelastic field. The equation is given 

by the relation:  
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where ta , E and U are linear coefficient of the thermal 

expansion, Young’s modulus elasticity of the material of the 

plate and Airys stress functions respectively.  

The displacement components and in the X and Y direction are 

represented in the integral form and the stress components in 

terms of U are given by  
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Where v  is the Poisson’s ratio of the material of the 

rectangular slab.  

The temperature of the thin rectangular slab at time t 

satisfying heat conduction equation as follows,  
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with the boundary conditions  

   yaxtattyxT 0000,,          

                                                                                           (2.9)  
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   yxattyxT 0,00,,    (2.10)  

   yaxattyxT 0,0,,  (2.11)  
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where a  is the thermal diffusivity of the material of the plate, 

k is the thermal conductivity of the material of the slab, q is 

the internal heat generation and  r is well known Dirac 

delta function of argument r. Equations (2.1) to (2.14) 

constitute mathematical formulation of the problem.  

III. SOLUTION OF THE PROBLEM 

To obtain the expression for temperature T(x, y, t), we 

introduce the sine integral transform and its inverse transform 

defined in Ozisik (1968) as  
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where m  is the 
thm root of the transcendental equation  

  ,......2,1,,0sin  m
a

m
a mm


  

On applying the sine integral transform defined in the 

equation (3.1), its inverse transform defined in equation. (3.2), 

applying Fourier cosine transform and its inverse successively 

to the equation (2.1), one obtains the expression for 

temperature distribution as  
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Where  222  
m
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IV. AIRY STRESS FUNCTION U 

Using Eq. (3.4) in equation (2.1), one obtains the expression 

for Airy’s stress function U as  
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V. DISPLACEMENT AND STRESSES 

Now using equations (3.4) and (4.1) in equations (2.2) to (2.6) 

one obtains the expressions for displacement and stresses as  
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VI. SPECIAL CASE AND NUMERICAL CALCULATIONS 

Setting 

         010121 0,0,,, taxttxxtxftxf    

       0121 sin
2

,, ttx
a

tFtF mmm    

where  x  is well known Dirac delta function of argument 

sec8,6,4,2,0,1000,2
0
 tmbmax .  

VII. MATERIAL PROPERTIES 

The numerical calculation has been carried out for steel (0.5% 

carbon) rectangular slab with the material properties defined 

as: 
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 Specific heat kgJcp /465  

Thermal diffusivity 
1261074.14  sm  

Thermal conductivity k = 53.6 W/m K,  

Poisson ratio 35.0  

Young’s modulus paGE 130  

Lame constant , 67.26  

Coefficient of linear thermal 

expansion Kat /11013 6   

Roots of Transcendental Equation  

8484.18,707.15,5656.12,4242.9,2828.6,1414.3 654321  

 are the roots of transcendental equation The numerical 

calculation and the graph has been carried out with the help of 

mathematical software Mat lab.  

VIII. DISCUSSIONS 

In this paper a thin rectangular plate with internal heat 

generation is considered which is free from traction and 

determined the expressions for temperature, displacement and 

stresses due to arbitrary heat supply on the edges x and y of 

slab. A mathematical model is constructed by considering 

steel (0.5% carbon) thin rectangular slab with the material 

properties specified above. The results obtained here are 

useful in engineering problems particularly in the 

determination of state of  stress in a thin rectangular slab, base 

of furnace of boiler of a thermal power plant and gas power 

plant.  
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