
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue IV, April 2017 | ISSN 2278-2540

www.ijltemas.in Page 91

Mutation Testing Vs. Regression Testing

Mahesh Kumar Tiwari
1
, Shalini Lamba

2

1, 2
 Assistant Professor, Computer Science Department, National P.G. College, Lucknow, U.P.

Abstract:- Testing is the process of finding as many errors

as possible before software is delivered to customer. Since,

there are various testing techniques available to establish

quality, performance and reliability of software but

Mutation Testing and Regression Testing is focused in this

paper. Mutation testing involves manipulating program

slightly and testing it with intention to find effectiveness of

test suite selected. Regression testing intends to find bugs

in software, if software is modified after delivery either

due to result of fixes or due to new or enhanced

functionality. The use of regression testing is to check that

enhancements have not affected previous functionality as

well as working correctly.

Keywords: - Mutation Testing, Regression Testing

I. INTRODUCTION

esting can be defined as verifying and validating

something (any software in terms of software testing).

These two activities play major role in software testing

process. Before software is delivered to customer, it has to be

sure that all requirements are met. The process of checking

whether the software is fulfilling all the customer

requirements is termed as software verification. It basically

checks that all expectations are properly met or not. While the

process of checking that is software is satisfying all user

requirements or not is termed as software validation. The

aim of validating software is to remove all the bugs form

software. Example: Consider a small program of Calculator.

In this calculator, checking if it has options of addition,

deletion, multiplication and division is regarded as it’s

verification while checking whether it is producing correct

result for every operation (including worst case scenario) is

termed as its validation.

Testing applies to real world scenarios also. Suppose that a

customer want to purchase TV of any particular brand (say

XYZ), so prior to billing he would like to verify TV’s brand

by seeing label on it and then customer would see its

performance i.e. customer will validate it. Thus, testing is an

essential part before purchasing any product. Testing gives an

idea about efficiency and quality of product under test and at

the same time minimizes the future risks.

Software testing is very important activity of Software

Development Life Cycle. It is very vast and time consuming

activity which consists of one third to one half of total

development process. It basically consists of two techniques-

Functional testing or black box testing and Structural testing

or white box testing. As the name suggests, in functional

testing the focus is on what is the output produced not how

it is produced while in structural testing, focus is on both i.e.

what is the output produced and how it is produced.

Therefore, in structural testing, source code is reviewed

thoroughly and test cases are derived from it. Functional

testing includes Boundary Value Analysis (BVA),

Equivalence Class Testing, Decision Based Table Testing,

Cause Effect Graphing Technique etc. while Structural testing

includes Control Flow Testing, Data Flow Testing, Slice

Based Testing, Mutation Testing etc[1].

II. MUTATION TESTING

Mutation testing involves changing the program and testing it.

In this, a copy of program is created and one or more changes

are introduced to this copy. The changed program is termed as

mutant of actual program and process of changing program

is known as mutation. This changed program is tested and

result produced is compared with expected output. The

purpose of mutation testing is to find effectiveness of test

suite selected. While creating the mutants of program,

following precautions should be considered-

 Mutants should be syntactically correct,

 They should compile correctly,

 Changes should be small so that objective of

program remains unchanged,

 Each mutant should differ from original program by

one and only one mutation.

Mutants can be created by changing access modifier, static

modifier, argument order, operator, any numeric value etc[2].

The mutants of programs are executed and their result is

tested against original program. If test cases are able to find

changes made i.e. if actual output and expected output is

different, then it is regarded as Killed Mutant. Otherwise if

actual output and expected output is same, then it is termed as

Alive Mutant[3].

Mutation testing is based on the assumption that a program

will be well tested if all simple faults are detected and

removed[4].

T

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue IV, April 2017 | ISSN 2278-2540

www.ijltemas.in Page 92

Figure 1 Process of Mutation Testing

After mutation testing is done mutation score is calculated as-

Mutation Score = Number of Mutants Killed / Total

Number of Mutants

Mutation score determines the accuracy and sensitivity of

program towards changes. Mutation score is always lies

between 0 and 1. A higher value of mutation score indicates

the effectiveness of test suite.

Mutation was originally proposed in 1971 but being very

expensive, it lost its importance but now, again it is being

widely used for languages like Java and XML.

Mutation Testing Example

To understand the concept of Mutation testing consider a

program that calculates the income tax based on following

criteria-

Income <= 40000 No Tax

Income >40000 and <=60000 tax=10% of income

exceeding 40000

Income>60000 and <=150000 tax=2000+20% of income

exceeding 60000

Income >150000 tax=20000+30% of

income exceeding 150000

The program for above code will be-

1) import java.io.*;

2) public class Income_Tax

3) {

4) public static void main(String agrs[])throws

IOException

5) {

6) int income;

7) double tax;

8) BufferedReader br=new BufferedReader(new

InputStreamReader(System.in));

9) System.out.print("Income\t: ");

10) income=Integer.parseInt(br.readLine());

11) if(income<=40000)

12) System.out.println("Tax\t: No Tax");

13) else if(income<=60000)

14) {

15) tax=10.0/100*(income-40000);

16) System.out.println("Tax\t: "+tax);

17) }

18) else if(income<=150000)

19) {

20) tax=2000+20.0/100*(income-60000);

21) System.out.println("Tax\t: "+tax);

22) }

23) else

24) {

25) tax=20000+30.0/100*(income-150000);

26) System.out.println("Tax\t: "+tax);

27) }

28) }

29) }

Let the test suite selected is

ID Income Tax (Expected Output)

1 37000 No Tax

2 57000 1700.0

3 100000 10000.0

4 200000 35000.0

Let the mutants of program are-

Test cases for Mutant M1

ID Income

Tax

(Expected

Output)

Tax

(Original

Output)

1 37000 No Tax -300.0

2 57000 1700.0 1700.0

3 100000 10000.0 10000.0

4 200000 35000.0 35000.0

Test cases for Mutant M2

ID Income

Tax

(Expected

Output)

Tax

(Original

Output)

1 37000 No Tax No Tax

2 57000 1700.0 1700.0

3 100000 10000.0 10000.0

4 200000 35000.0 35000.0

Test cases for Mutant M3

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue IV, April 2017 | ISSN 2278-2540

www.ijltemas.in Page 93

ID Income

Tax

(Expected

Output)

Tax

(Original

Output)

1 37000 No Tax No Tax

2 57000 1700.0 1700.0

3 100000 10000.0 6000.0

4 200000 35000.0 35000.0

Test cases for Mutant M4

ID Income

Tax

(Expected

Output)

Tax

(Original

Output)

1 37000 No Tax No Tax

2 57000 1700.0 1700.0

3 100000 10000.0 6000.0

4 200000 35000.0 75500.0

As we can see that Mutation M2 is producing same expected

and desired output hence it will be alive while Mutation M1,

M3, M4 will be killed. Hence,

 Mutation score=3/4

 =0.75

Higher the mutation score, better the effectiveness of test

suite.

III. REGRESSION TESTING

Once software is tested, it is delivered to customer. Since

testing shows presence of errors not absence of errors,

therefore there may be possibility that any error may arise

after delivery of software. In this case software will be

modified. The process of testing the modified portion of

program and portion likely to be affected by modification is

termed as Regression Testing. Modification in program or

software is not always carried out due to errors. It may also be

carried out if customer wants to add certain functionality to

existing software.

Regression testing is part of system maintenance activity,

carried out to ensure that modified portion has not introduced

errors in previously tested software and is working properly.

Thus, regression testing is carried out when any changes are

made to software after delivery.

For regression testing, already available test cases are used.

There are three possibilities of selecting test cases-

1) Select all test cases, which is very simple but at same

time very time consuming,

2) Select random test cases, which is less time

consuming but there is possibility that it may escape

test cases related to modified portion of code,

3) Select test cases that traverse the modified portion of

code.

The idea of regression testing is to save time and money. As

there is no logic in testing completely tested program again.

Regression Testing Example

To understand the concept more clearly, consider the previous

program of computing income tax. Suppose that now

customer wants to add clause that if income is above 200000

then surcharge of 2% on tax is calculated as per previous

rates. So, the programmer will modify the program according

to additional requirements and the modified program will be

as-

1) import java.io.*;

2) public class Income_Tax

3) {

4) public static void main(String agrs[])throws IOException

5) {

6) int income;

7) double tax;

8) BufferedReader br=new

BufferedReader(new

InputStreamReader(System.in));

9) System.out.print("Income\t: ");

10) income=Integer.parseInt(br.readLine());

11) if(income<=40000)

12) System.out.println("Tax\t: No Tax");

13) else if(income<=60000)

14) {

15) tax=10.0/100*(income-40000);

16) System.out.println("Tax\t: "+tax);

17) }

18) else if(income<=150000)

19) {

20) tax=2000+20.0/100*(income-60000);

21) System.out.println("Tax\t: "+tax);

22) }

23) else if(income>150000&&income<=200000)

24) {

25) tax=20000+30.0/100*(income-150000);

26) System.out.println("Tax\t: "+tax);

27) }

28) else

29) {

30) tax=1.02*(20000+30.0/100*(income-150000));

31) System.out.println("Tax\t: "+tax);

32) }

33) }

34) }

As one can see that, previous code is modified from line 23.

So test cases will be chosen such that it covers all statements

from line 23, to ensure that the modified code is correct and

properly implemented. Therefore test cases for this will be as

follows-

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue IV, April 2017 | ISSN 2278-2540

www.ijltemas.in Page 94

S. No. Income

Tax

(Expected

Output)

Tax

(Original

Output)

1 160000 23000.0 23000.0

2 200000 35000.0 35000.0

3 200001 35700.306 35700.306

4 250000 51000.0 51000.0

Thus, modified program is also correct; also it has not

disturbed working of previous program. Hence regression

testing is successful.

IV. CONCLUSION

Testing is an essential phase of SDLC. Out of various testing

techniques available mutation testing and regression technique

is highlighted in this paper. Mutation testing and Regression

testing are two completely different testing techniques but

often resembled same by beginners due to modification

associated with it. In mutation testing focus is on finding

effectiveness of test suite selected, while in regression testing

effectiveness of modified application is tested. Since in both

process code is modified, but in regression testing

modification is requested by client and is system maintenance

activity while in mutation testing modification is part of

testing and is fault based testing technique as faults are

forcefully introduced by modification. Thus, purpose of both

testing is to provide a bug free software but the techniques

used for same are totally non identical.

REFERENCES

[1]. Megha Jhamb, Abhishek Singhal, And AbhayBansal, “A Survey
on Different Approaches for Efficient Mutation Testing”

International Journal of Scientific and Research Publications,

Volume 3, Issue 4, April 2013.

[2]. Lingming Zhang, Darko Marinov, Lu Zhang, Sarfraz Khurshid

“Regression Mutation Testing”, ISSTA-2012.

[3]. Y. Jia and M. Harman. “An analysis and survey of the
development of mutation testing”, IEEE TSE, 37(5):649–678,

2011.

[4]. A Jefferson Offutt, Kanupriya Tewary, “Experiments with Data
flow and Mutation Testing” , Feburary 1994.

