
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 137

XSCDF: Towards a Framework for Comprehensive

Software Clone Detection and Visualization using

Ontology

Syed Mohd Fazalul Haque
1
, V Srikanth

2
, E. Sreenivasa Reddy

3

1
Maulana Azad National Urdu University, Hyderabad, Telangana, India

2
K L University , Guntur, Andhra Pradesh, India

3
Acharya Nagarjuna University, Guntur, Andhra Pradesh, India

Abstract: - Software development has become a complex

phenomenon as there are increased and ever-changing

expectations from clients. In fact the development teams often

feel the pressure of releases. They indulge in less than ideal

approaches as well to produce code. Sometimes they cut and

paste code causing code duplicates or code clones. Clones can

lead to propagation of bugs and cause maintenance issues.

Detection of code clones has plethora of advantages including

copyright protection, elimination of duplicates by refactoring,

exploration of design patterns for industry best practices and so

on. Analyzing big software projects and finding duplicates is

tedious task. Many researchers contributed towards identifying

different kinds of clones and detection techniques. However we

felt a comprehensive and extendable framework that not only

supports clone detection but also visualization techniques for

easy comprehension are lacking. In this paper, we propose such

framework named eXtensible Software Clone Detection

Framework using ontology concept (XSCDF) which is generic

and supports clone detection of different languages. It provides

placeholders for future techniques. We built a prototype

application using Java programming language to demonstrate

the proof of concept. Ontology concept is used to visualize clone

detection results. The empirical results reveal that the

framework has multi-language support for duplicate code

detection.

Index Terms – Clone, clone detection, SCDF, visualization

I. INTRODUCTION

lones are considered to be identical or near identical piece

of codes in source code. Usually code clones are created

just for avoiding coding. Stated differently code clones results

in copy paste operations performed for using the same code in

different parts of software. Sometimes code clones occur

unintentionally due to similar API usage. In the process of

developing huge systems, code cloning became a common

phenomenon. Large software systems need continuous

maintenance. With code clones there is possibility of bug

propagation. It in turn leads to maintenance problems. For

instance a JDBC connectivity code is repeated in 100 Java

programs in a project. In this case the code is duplicated

instead of reusing code. When there is need for switching to

different backend or different environment, there are many

programs to be modified and recompiled. It causes

maintenance problem. It increases the cost of maintenance of

software. There is the need for finding duplicates of clones in

software and refactor them in order to have a system that can

work with reduced maintenance.

Code clones are broadly classified into two types. They are

clones with similar source code and clones with similar

functionalities. Based on the similarity of source code or

functionality four types of clones are identified. They are

known as type 1, type 2, type 3 and type 4. Type 1 clones are

similar except differences in comments and whitespaces. Type

2 clones are syntactically and structurally identical but differ

in identifiers, comments, layout, types and literals. Type 3

clones are identical code fragments with further modifications

in addition to having differences in comments, layout, types,

literals, and identifiers. Type 4 clones perform identical

computations but implemented with different syntactical

variants. The type 4 clones are example for functional

similarities while the first 3 types exhibit similarity of source

code. Therefore it is very important to have code detection

techniques for leveraging software industry to have best

practices.

Our Contributions

Keeping the importance and impact of finding clones in

software we proposed a framework known as eXtensible

Software Clone Detection Framework using ontology concept

(XSCDF) which provides generic architecture which can help

to detect clones in multiple languages. Moreover it provides

placeholders to accommodate future detection techniques. In

addition to this we proposed a methodology for clone

detection besides visualizing clones. We built a prototype

application to demonstrate the proof of concept. The results

are presented using visualization of text based GUI and

ontology based knowledge representation as well.

The remainder of the paper is structured as follows. Section II

talks about review of literature pertaining to software cloning

C

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 138

and clone detection. Section III proposes a comprehensive

framework that can cater to the needs of clone detection.

Section IV provides implementation details. Section V

presents results of experiments while section VI provides

conclusions and directions for future work.

II. RELATED WORKS

This section review literature on code clone detection. Gybels

and Kellens (2005) [8] explored clone detection concepts in

Aspect Oriented Software Development (AOSD) or Aspect

Oriented Programming (AOP). AOP is the paradigm shift in

programming of object oriented (OO) languages. When code

is transformed to AOP approach, there might be some

duplicates that form clones. Young et al. (2005) [11] studied

the concept of cloning from biological perspective and

provided analogy with software cloning. Salvi and Tuberosa

(2005) [17] used positional cloning concept in case of

biological experiments. Their research was pertaining to DNA

sequences that can be understood in terms of code cloning as

well. Cline et al. (2005) [20] explored clone detection

approaches using gene expression data. They proposed a

framework to serve this purpose. Kuhn et al. (2005) [24]

explored the concept of semantic clustering. They also used

the process of high-level clone detection in order to improve

quality of clustering process.

Nikolsky et al. (2005) [30] focused on drug discovery in

biochemical experiments. They used similar expressions in

order to find out duplicates. Vollenveider et al. (2006) [26]

used clone detection concepts in biological experiments. They

used concept known as clone tolerance in the environmental

and experimental botany. Laufs et al. (2006) [10] explored

biological concepts with respect to cloning. Ratiu et al. (2006)

[9] opined that code redundancies is one of the reasons of

software clones. They also said that synonymy and polysemy

concepts can also be found as clones in some cases. Groups of

elements or concepts which can have duplicates can be

located using clone detection methods. Czarnecki et al. (2006)

[5] explored feature models, clone detection in feature models

and formal representation of features using ontology. The

feature models are presented in the form of views on

ontology. A good review of clone detection techniques is

found in [32].

In [5] the authors also explored software cloning when the

software involves DNA sequences with duplicates. Similar

kind of work was done by Darias et al. (2007) [12]. Meditskos

and Bassiliades (2007) [15] explored object oriented similarity

measures in order to find out effective service discovery with

respect to web services. In the process they focused on cone

cloning in order to find similar services. Poshyvanyk et al.

(2009) [22] explored object oriented software systems for

finding coupling measures. They used the measures for

finding concept clones and impact analysis. By finding

coupling they focused on the quality of software. Pariset et al.

(2009) [16] used clone detection methods for gene

expressions. Roy et al. (2009) [1] compared and reviewed

many clone detection techniques. They explored textual

approaches, lexical approaches, tree-matching approaches;

metrics based approaches, semantic approaches, and hybrids.

The tools compared by them include usage facets, interaction

facets, language facets, technical facets, adjustment facets,

processing facets, and evaluation facets.

Martin and Cordy (2011) [7] explored the concept of

contextual clones to find out web service similarities. Web

Service Description Language (WSDL) is used in order to

search for duplicate services or clones. Contextual clones

make use of contextual codes which are duplicates in WSDL

files. Keivanloo et al. (2011) [6] proposed an approach for

searching real-time clones in the Internet. Their approach is

hybrid in nature as it uses many techniques such as semantic

web reasoning, information retrieval clustering, and code

patter indexing. It is able to detect clones with less response

time. Jia et al. (2011) [23] focused on mutation testing. In the

process various clones are injected into source code. Such

code is detected using clone detection techniques and tools.

Takuya and Masuhara (2011) [25] explored associative search

of source code in order to find duplicates while developer is

typing source code.

It does mean that they proposed a method to identify

duplicates as you type source code. Malhotra et al. (2012) [27]

used similarity measures and lexical concepts in order to find

similar users in social networks using footprint of users.

Mishne et al. (2012) [29] explored type state-based semantic

code search in programs in order to identify duplicates. Thus

they found code duplicates in source code. Wursch et al.

(2012) [19] focused on explored ontologies to present

pyramid of software evolution. In the process they also

explored code clones. They opined that code clones are part of

software evolution. Shamshirband et al. (2013) [18] explored

multi-agent based approach for clone detection and clone

selection with respect to gene expressions. Stephan and Cordy

(2013) [4] presented model comparison approaches that help

in detecting duplicates in software models. Model clone

detection or code clone detection is needed when software

contains duplicates due to similar requirements are repeated in

a project.

Keivanloo et al. (2011) [13] explored ontology models to

represent source code. Complex code search was performed

for various purposes including clone detections. They

proposed a linked data framework for providing sharable

services. Towards software mining and analysis they provided

some baseline implementation. Kaur et al. (2012) [31]

compared clone detection tools such as SolidSDD and

CONQAT by using different clone metrics. Stephan and

Cordy (2012) [3] focused software models in model-driven

development. Especially they explored on clone detection

with respect to high-level software models. Leopold et al.

(2014) [21] studied process model clones with respect to the

abstractions of process models. They used process model

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 139

repositories and found clones in the models for making

strategic decisions.

Kelkar and Deobagkar (2014) [28] explored DNA sequences

for finding clones. As part of drug effectiveness testing,

clones are used to find effective results. Tonella et al. (2007)

[14] reviewed various reverse engineering studies for

modernizing legacy systems. In the process they also explored

to detect clones in the software in order to refactor it for better

maintenance. They identified unique components and then

transformed into different representation in order to upgrade

legacy code to modern code. Krishnan and

Ananthapadmanaban (2014) [2] focused on the clone

detection process in sensor networks. Clone detection

techniques used in such networks can help secure

communications in the network.

In this paper we proposed a methodology for discovering code

clones and visualizing them software. It makes use of source

code analysis in order to find code duplicates. Our work in

this paper is comparable with tools such as SolidSDD and

CONQAT explored by Kaur et al.

III. PROPOSED FRAMEWORK

This section describes our generic framework which provides

flexible and comprehensive means of achieving clone

detection. It is extensible and provides placeholders for

pluggable clone detection methods and visualization

techniques for future enhancements. An important feature of

the proposed framework is that it supports personalized user

preferences. The user preferences can help in choosing target

language for clone detection, selection of visualization

technique preferred and even the selection of clone detection

technique. Thus the personalized preferences are associated

with the user session. These preferences can be changed when

required.

Figure 1 – Overview of XSCDF

As shown in Figure 1, the framework has execution model

apart from the personalized configuration. The execution

model is runtime functionality of the proposed framework.

The runtime functionality includes both clone detection and

visualization. The clone detection procedure depends on the

preference in terms of clone detection technique chosen by

end user. The visualization technique is also same. Based on

the user preferences, the chosen visualization technique is

used. The framework supports single source file as input of a

set of source files as folder.

One Size Does Not Fit All

It is true that one size does not fit all. In the process of

proposing and implementing a generic framework named

XSCDF we intend to support multiple clone detection

techniques and visualization methods using ontology concepts

in order to cater to the needs of different users. This makes the

proposed framework extensible and flexible besides helping

users to have intuitive interface based on the personalized

preferences.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 140

Pseudo Code for the Flow of Execution Model

01 Initialize target language vector TL

02 Initialize visualization vector V

03 Initialize clone detection vector CD

04 Obtain target language tl from TL

05 Obtain visualization technique vt from V

06 Obtain clone detection technique dt from CD

07 IF dt=A THEN

08 Set A as default dt FOR user u

09 ELSE IF dt=B THEN

10 Set B as default dt for user u

11 ELE IF dt=C then

12 Set C as default dt for user u

13 END IF

14 IF vt=V1 THEN

15 Set V1 as default vt for user u

16 ELSE IF vt=V2 THEN

17 Set V2 as default dt for user u

18 ELE IF vt=V3 then

19 Set V3 as default dt for user u

20 END IF

21 Input user file f

22 IF f is source file THEN

23 Detect clones

24 Visualize clones

25 ELSE

26 Instruct user to choose source file

27 END IF

Listing 1 – Pseudo code for execution model

The pseudo code provides the details of the proposed

execution model which takes care of runtime user preferences

before applying clone detection and visualization techniques.

It makes use of chosen preferences for performing clone

detection and visualization of clones.

Zero Maintenance Approach

Industry best practices are required when new techniques are

to be adapted without much maintenance. In the

implementation of clone detection, the XSCDF supports user

preferences. The preference range may increase in future. To

avoid reinventing the wheel again, design patterns are

introduced. The interfaces are kept same while the framework

supports future implementations also without any

maintenance cost.

DetectionTechnique.java

It is an interface which contains common interface required by

clone detection. The methods are abstract in nature and the

interface can have many implementations.

VisualizationTechnique.java

It is an interface which contains common interface required by

visualization. The methods are abstract in nature and the

interface can have many implementations.

Class Hierarchy for Clone Detection Factory

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 141

:CloneDetection
<<interface>>

CloneDetection1 CloneDetection2 CloneDetection3

CloneDetectionFactory

Client

Figure 2 - Class Hierarchy for Clone Detection Factory

:Visualization
<<Interface>>

Visualization1
Visualization2 Visualization3

VisualizationFactory

client

Figure 3: Class hierarchy for visualization of clone detection results

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 142

public class CloneDetectionFactory {

 public static CloneDetection getCloneDetectionTechnique(String technique) {

 if(technique.equals(“A”))

 return new CloneDetection1();

 else if(technique.equals(“B”))

 return new CloneDetection2();

 else

 return new CloneDetection3();

 }

}

Listing 2 – Factory pattern

As found in listing three the factory pattern is able to take

client need and return an instance of chosen technique. Thus it

helps in accommodating future techniques as well. In the

same fashion, we can assume VisualizationFactory class too.

IV. IMPLEMENTATION

The proposed methodology explained earlier in this paper is

used to implement the clone detection method. We built a

prototype application to demonstrate the proof of concept. The

application makes use of Java’s Swing API for intuitive user

interface. The functionality is implemented using collection

API present in java.util package, regular expression API of the

java.util.regex package, java.swing.text package for

visualization of clones, java.io package to deal with IO

operations on files and java.util.logging API for recording

events into a log file. JFileChooser class of swing API is used

for having interactive selection of a file.

Figure 4 – UI showing details of selected file.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 143

Figure 4 shows the selected file and its metrics like class

count, method count, constructor count, variable count, total

tile count with and without comments and spaces, and total

file size in bytes. Figure 1 appears after choosing a file

directory. The prototype application supports choosing either

a file for duplicate detection or a folder with multiple source

files. A folder in turn may have sub folders. The sub folders in

turn may have sub directories. To hand the complexity two

recursive functions by name getTotalFileFount() and

getFileList() are implemented.

Listing 3 – Shows recursive calls to track the count of files in directories and sub directories

Listing 4 – Shows recursive calls to obtain the list of files of different directories

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 144

The purpose of this code is to obtain all source files from the

given project folder. Thus it facilitates duplicate code

detection of various files. These code listings show the part of

finding all source files only. The rest of the functionality is in

the form of code analysis which finds duplicate code and

detects it. Collection API is used to maximum extent in order

to deal with huge amount of code and comparisons and

intermediate results. Figure 2 shows the source code based on

the selection of a file.

Figure 5 – Shows UI viewing source code of selected file

As can be seen in Figure 5, it is evident that the source code of

selected file is presented in a text area control. However, it is

not easy to find duplicates manually provided the size of files

in the source code. We automated the clone detection process.

The implementation of duplicate code detection mechanism is

described here. Vector class from java.util package is used to

have multiple instances in order to store all classes, all

methods of a class, and all variables of a class. A Plain Old

Java Object (POJO) class or Java Bean class named

VariableDefinition is used to hold details of one variable. A

set of such bean instances can hold the state and meta data of

all variables. The data about variable include variable name,

data type, position, access type, start line number, whether

variable has been initialized.

In the same fashion MethodDefinition class is another Java

Bean class which can hold the state of Method instance. This

class can hold method name, return type, parameter

definitions, local variables, content, method line number,

variable count, maximum depth of method nesting, method

type, access type, and start line number. In the same fashion a

ClassDefinition class instance can capture details of a class in

terms of interface names, method names, class variable list,

parent class name, class name, content of class, class line

number, and maximum class nesting depth, access type,

variable count, and start line number. There is another class

for having content of a file in terms of different vectors such

as file content line by line with and without comments, class

code blocks, method code blocks, variables, and so on. This

class is defined with methods to obtain class details, method

details, literals, code block types, removal of comments,

obtaining entire code block, obtaining primitive data types,

counting variables, and obtaining details of variables.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 145

Figure 6 – UI visualizing code clones

The duplicate code detection is actually done by an iterative

process after pre-processing which eliminates unnecessary

processing of certain things such as white spaces and

comments. The content of file line by line is processed in

order to add duplicates to different vectors.

DefaultHighlighter class is used to apply a colour to one piece

of code duplicate stored in a vector. The Random class of

java.util package is used to have a colour combination with

Red, Green and Blue (RGB) with arbitrary values between 0

and 255. Each code clone is painted using separate randomly

picked colour. The application also supports pluggable look

and feel for presenting results with native look and feel of OS.

Two vectors are used to add duplicate lines and corresponding

colour codes respectively. These two vectors are used later for

visualization of results.

V. RESULTS AND EVALUATION

The proposed methodology and the framework named

XSCDF is evaluated using different metrics. The results are

compared with other tools namely SolidSDD and CONQAT.

The metrics used for evaluation are described here.

Population of Clone Class (POP)

It refers to the number of elements in a clone class. A clone

class is the class which contains at least on clone pair. Clone

pair is a pair of code segments that happen to be identical. If

the POP is more it does mean that code clones are more

frequent in the in the system.

Ratio of Non-Repeated Token Sequences (RNRS)

In a given clone set RNRS is the ratio of non-repeated token

sequences of code clones. If the RNRS is higher it indicates

that each code clone contains more non-repeated token

sequences.

LEN

In a given clone set, it refers to the average length of token

sequences of code clones. Higher in length indicates that more

token sequences exist in the code clones.

Execution Time

It is the amount of time taken by the tool in question to

identify clones in a given source file.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 146

Clones

It is the number of clones identified by the tool in question in

a given source file.

Gaps

It is the statistical measure to know how many insertions or

deletions are in a source file.

Metrics Tools Clones Gaps RNR POP LEN Execution Time

Solid SDD 9 2 5.2 386 80 1s

CONQAT 2 0 7 398 82 20s

XSCDF 9 2 8 398 82 o.3s

Table 1 - Tool comparison based on metrics

Tools or Features Solid SDD CONQAT XSCDF

Languages Supported C,C++,JAVA,C# ABAP,ADA,C++,C,JAVA,COBOL JAVA,C++,C#

Domain Clone detection Clone detection Clone detection

Requirements No requirements Java1.6,graphviz2,Microsoft.net.2.0 No requirements

Source data Programming language, files files Source file or folder

Result output Source code, graphical view Reports, clone, compare view Clones graphical view

Metrics produced Clone metrics Clone metrics, line metrics Clone metrics

Table 2 – Tool comparison based on features

Figure 7 – Performance comparison of tools based on metrics

As shown in Figure 7, the performance comparison of tools is

made in terms of metrics such as clones, gaps, RNR, POP,

LEN and execution time. The proposed system XSCDF has

comparable performance with other tools such as SolidSDD

and CONQAT. The ontology concept is used to visualize the

duplicates found in the empirical study.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 147

Figure 8 - Shows clones as concepts in ontology knowledge representation

As shown in Figure 8, it is evident that the ontology concept

is used to visualize the duplicates found in the given source

code. The concepts are used to have knowledge

representation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied software clones and clone detection

mechanisms. Software clones cause potential risk to software

industry as they can propagate bugs and cause maintenance

problems. The existing detection techniques are based on

different means such as static code analysis, reflection and

other techniques. There is need for a comprehensive and

extendable framework that can support future detection

methods and visualization techniques. In this paper we

proposed a generic framework for clone detection and

visualization. It is named as eXtensible Software Clone

Detection Framework using ontology concept (XSCDF). This

framework provides placeholders for different cloning

techniques that can be plugged in future. We proposed

methodology for clone detection. We built a prototype

application to realize the framework and he methodology for

proof of concept. Moreover it supports clone detection in

source codes built in multiple languages such as C, C++, and

Java and C #. Our empirical results revealed that the proposed

framework is effective in clone detection. Two kinds of clone

visualization are made in this paper. They are textual

visualization with graphical view and ontology visualization.

This research can be extended further by exploring different

clone detection techniques and their applications besides

visualization techniques to have intuitive comprehension of

clones for making well informed decisions. Another research

direction is to leverage clone detection using ontology.

REFERENCES

[1]. Chanchal K. Roy, James R. Cordy and Rainer Koschke. (2009).
Comparison and Evaluation of Code Clone Detection Techniques

and Tools: A Qualitative Approach. Science of Computer

Programming , p1-43.
[2]. K.B.Gopi Krishnan and K.R.Ananthapadmanaban. (2014). On the

Node Clone Detection in Sensor Networks for Electronic Copy
Right Management System. International Journal of Computer

Applications. 2 (8), p345-355.

[3]. Matthew Stephan and James R. Cordy. (2011). A Survey of
Methods and Applications of Model Comparison. ACM , p1-42.

[4]. Matthew Stephan and James R. Cordy. (2013). A Survey of Model

Comparison Approaches and Applications. IEEE, p1-12.
[5]. Krzysztof Czarnecki, Chang Hwan Peter Kim and Karl Trygve

Kalleberg. (2006). Feature Models are Views on

Ontologies. IEEE, p1-10.
[6]. Iman Keivanloo, Juergen Rilling and Philippe Charland. (2011).

SeClone - A Hybrid Approach to Internet-scale Real-time Code

Clone Search.IEEE , p1-12.
[7]. Douglas Martin and James R. Cordy. (2011). Analyzing Web

Service Similarity Using Contextual Clones. ACM, p1-6.

[8]. Kris Gybels and Andy Kellens. (2005). Experiences with
Identifying Aspects in Smalltalk Using ’Unique Methods. ISSN ,

p1-6.

[9]. Daniel Ratiu and Florian Deissenboeck. (2006). How Programs
Represent Reality (and how they don’t). IEEE, p1-10.

[10]. Stephanie Laufs, Guillermo Guenechea, Africa Gonzalez-Murillo,

K. Zsuzsanna Nagy, M. Luz Lozano, Coral del Val, Sunitha
Jonnakuty, Agnes Hotz-Wagenblatt, W. Jens Zeller, Juan A.

Bueren and Stefan Fru. (2006). Lentiviral vector integration sites

in human NOD/SCID repopulating cells. Inter Sciences. . (.), p1-
11.

[11]. Jason A. Young , Quinton L. Fivelman , Peter L. Blair , Patricia de

la Vega , Karine G. Le Rochd, Yingyao Zhoud, Daniel J. Carucci ,
David A. Baker and Elizabeth A. Winzeler. (2005). The

Plasmodium falciparum sexual development transcriptome: A

microarray analysis using ontology-based pattern

identification. ISSN. 143 , p67–79.

[12]. M. J. Darias , J. L. Zambonino-Infante , K. Hugot & C. L. Cahu

and D. Mazurais. (2008). Gene Expression Patterns During the
Larval Development of European Sea Bass (Dicentrarchus

Labrax) by Microarray Analysis. International Journal of

Computer Applications. 10 , p416–428.
[13]. Iman Keivanloo, Christopher Forbes, Juergen Rilling and Philippe

Charland. (2011). Towards Sharing Source Code Facts Using

Linked Data. ACM, p1-4.
[14]. Paolo Tonella · Marco Torchiano · Bart Du Bois · Tarja Systä.

(2007). Empirical studies in reverse engineering: state of the art

and future trends. Springer Science. 12 , p551–571.
[15]. Georgios Meditskos and Nick Bassiliades. (2007). Object-

Oriented Similarity Measures for Semantic Web Service

Matchmaking. IEEE , p1-10.
[16]. Lorraine Pariset, Giovanni Chillemi, Silvia Bongiorni, Vincenzo

Romano Spica and Alessio Valentini. (2009). Microarrays and

high-throughput transcriptomic analysis in species with
incomplete availability of genomic sequences. Ind. Eng. Chem.

Res. 25, p1-8.
[17]. Silvio Salvi and Roberto Tuberosa. (2005). To clone or not to

clone plant QTLs: present and future challenges. ISSN. 10 (6), p1-

10.
[18]. Shahaboddin Shamshirband , NorBadrulAnuar,

MissLaihaMatKiah and AhmedPatel. (2013).An appraisal and

design of amulti-agent system based cooperative wireless intrusion
detection computational intelligence technique. IEEE, p1-23.

[19]. Michael Würsch , Giacomo Ghezzi , Matthias Hert , Gerald Reif

and Harald C. Gall. (2012). SEON: a pyramid of ontologies for
software evolution and its applications. Springer Science. 94 ,

p857–885.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VII, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 148

[20]. Melissa S. Cline, John Blume, Simon Cawley, Tyson A. Clark,

Jing-Shan Hu, Gang Lu, Nathan Salomonis, Hui Wang and Alan

Williams. (2005). ANOSVA: a statistical method for detecting

splice variation from expression data. ISSN , p1-10.
[21]. Henrik Leopold, JanMendling , HajoA.Reijers and

MarcelloLaRosa. (2014). Simplifyingprocessmodelabstraction:

Techniquesforgeneratingmodelnames. ISSN. 39, p134–151.
[22]. Denys Poshyvanyk , Andrian Marcus , Rudolf Ferenc & Tibor

Gyimóthy. (2009). Using information retrieval based coupling

measures for impact analysis. Springer . 14 , p5-32.
[23]. Yue Jia and Mark Harman. (2011). An Analysis and Survey of the

Development of Mutation Testing. IEEE. 37 (5), p1-30.

[24]. Adrian Kuhn, Stephane Ducasse and Tudor Gırba. (2005).
Enriching Reverse Engineering with Semantic Clustering. IEEE. .

(.), p1-10.

[25]. Watanabe Takuya and Hidehiko Masuhara. (2011). A
Spontaneous Code Recommendation Tool Based on Associative

Search. ACM , p1-4.

[26]. Pierre Vollenweider, Claudia Cosio, Madeleine S. Gunthardt-

Goerg and Catherine Keller. (2006). Localization and effects of

cadmium in leaves of a cadmium-tolerant willow (Salix viminalis

L.).ACM. 58 , p25–40.

[27]. Anshu Malhotra, Luam Totti, Wagner Meira Jr,Ponnurangam

Kumaraguru and Virgılio Almeida. (2012). Studying User

Footprints in Different Online Social Networks. IEEE , p1-6.

[28]. Ashwin Kelkar and Deepti Deobagkar. (2016). A novel method to
assess the full genome methylation profile using monoclonal

antibody combined with the high throughput based microarray

approach. ISSN , p1-6.
[29]. Alon Mishne,Sharon Shoham and Eran Yahav. (2012). Typestate-

Based Semantic Code Search over Partial Programs. ACM, p1-20.

[30]. Yuri Nikolsky,Tatiana Nikolskaya and Andrej Bugrim. (2005).
Biological networks and analysis of experimental data in drug

discovery. ACM. 10 (9), p1-10.

[31]. Kaur, P., Kaur, H. and Kaur, R. (2012). Comparison of Clone
Detection Tools: CONQAT and SolidSDD. International Journal

of Advanced Research in Computer Science and Software

Engineering, Volume 2, Issue 5, p1-5.
[32]. Syed Mohd Fazalul Haque, V Srikanth and E. Sreenivasa Reddy

(2016). Present State-of-the-Art of Software Cloning and

Detection Methods. Communicated to International Association

for the Engineers.

