
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

3rd Special Issue on Engineering and Technology | Volume VI, Issue VIIS, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 104

Fuzzy LALR Parser for Parsing Natural Language

Sentences of English Language
Suvarna G Kanakaraddi

1
, Suvarna S Nandyal

2

1
BVB College of Engineering & Technology, Hubli-580031, Karnataka, India

2
PDA College of Engineering, Kalaburgi-585102, Karnataka, India

Abstract—The Natural Language Processing (NLP) includes

scope of computational methods for examining and speaking to

actually happening writings at least one levels of semantic

investigation with the end goal of accomplishing human-like

dialect preparing for a scope of assignments or applications. For

performing sentence structure investigation, the Fuzzy LALR

(FLALR) parser is the best-known and most proficient parsing

instrument. Really, the progressions of the setting free

preparations are required to outline the well-working FLALR

parser. In this paper FLALR parser, is presented, and its

application to common dialect parsing is talked about. A FLALR

parser is a move diminish parser which is deterministically

guided by a parsing table. A parsing table can be acquired

consequently from a setting free expression structure linguistic

use. FLALR parsers can't oversee vague sentence structures, for

example, common dialect syntaxes, on the grounds that their

parsing tables would have increase characterized sections, which

block deterministic parsing. FLALR parser, be that as it may,

can deal with duplicate characterized passages, utilizing a

dynamic programming strategy. At the point when an input

sentence is ambiguous, the parser delivers all conceivable parse

trees without parsing any piece of the information sentence more

than once similarly.

Index Terms—NLP, LR, FLALR, FCLR, FSLR and Fuzzy

Context free Grammar.

I. INTRODUCTION

anguage is one of the key parts of human conduct and is

vital segment of our lives. In composed frame it fills in as

a long –term record of learning starting with one era then onto

the next. In talked shape it fills in as our essential methods for

organizing our everyday conduct with others. Characteristic

Language Processing is a hypothetically persuaded scope of

computational systems for breaking down and speaking to

actually happening writings at least one levels of semantic

examination with the end goal of accomplishing human-like

dialect preparing for a scope of errands or applications.

The FLALR (Look Ahead-LR) parsing strategy is between

Fuzzy Simple LR (FSLR) and Fuzzy Canonical LR (FCLR)

both as far as energy of parsing linguistic uses and simplicity

of usage. This technique is regularly utilized as a part of

training in light of the fact that the tables gotten by it are

extensively littler than the FCLR tables, yet most regular

syntactic builds of programming dialects can be

communicated advantageously by a FLALR sentence

structure. FLALR parsers have been created initially to

programme dialect of compilers. A FLALR parser is a look

ahead parser which is deterministically guided by a parsing

table showing what move ought to be made next. The parsing

table can be acquired consequently from a setting free

expression structure linguistic use, utilizing a calculation. The

LR parsers have occasionally been utilized for Natural

Language Processing likely in light of the fact that:

1. It has been believed that characteristic dialects are

not setting free, while FLALR parsers can bargain

just with setting free dialects.

2. Characteristic dialects are uncertain, while standard

FLALR parsers can't deal with vague dialects.

The current writing demonstrates that the conviction “natural

languages are not context-free" is not necessarily true and

there is no explanation behind us to surrender the setting

flexibility of common dialects. Our fundamental concern is

the means by which to adapt to the uncertainty of regular

dialects, and this worry is tended to in the accompanying

segments.

Interestingly with Aho et al [1]. Creators approach is to

augment LR parsers, with the goal that they can deal with

different passages and deliver more than one parse tree if

necessary. Here LR parsers are upgraded by utilizing Fuzzy

rationale. Next Section talks about the study led.

II. LITERATURE SURVEY

This section discusses about the survey about the research

conducted by various authors. Many authors have proposed

different techniques for processing natural language.

 Nilsson et al. [2] have proposed novel approach to extract

structural information from source code using state-of-the-art

parser technologies for natural languages. Here natural

language parsing techniques are applied for information

extraction from formally structured information sources, such

as programs. This method automatically generates the

language specific information extractor using machine

learning and training of a generic parsing approach. The

training data can be generated automatically.

L

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

3rd Special Issue on Engineering and Technology | Volume VI, Issue VIIS, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 105

Chen et al. [3] proposed a parsing model which is factored

into a lexical and a constituent model, which enables

interaction between tagging and parsing. Experimental result

achieves statistically significant improvement in both parsing

and tagging accuracy on both English and Chinese.

Tomita et al. [4] designed an efficient parsing algorithm for

natural language interfaces using context-free grammars. Here

LR parsing algorithm is designed, which computes an LR

shift-reduce parsing table from a given augmented context-

free grammar. The algorithm parses a sentence strictly from

left to right on-line, that is, it starts parsing as soon as the user

types in the first word of a sentence, without waiting for

completion of the sentence.

Liang Chen and Naoyuki Tokuda [5] have developed a table

look- up parser for intelligent language tutoring system

(ILTS), which is based on the template structure for the

answers of questions. It is shown that the number of different

grammar structure of sentences in a template is much smaller

than that of different correct sentences.

Verd‟u-Mas et al. [6] have compared three different

approaches of probabilistic context-free grammar for natural

language parsing from a tree bank corpus: (1) a model that

simply extracts the rules contained in the corpus and counts

the number of occurrences of each rule; (2) a model that also

stores information about the parent node‟s category, and (3) a

model that estimates the probabilities according to a

generalized k-gram scheme for trees with k = 3. Proposed a

Probabilistic Context Free Grammar.

Mochamad Vicky Ghani Aziz et al.[7] proposed natural

language processing approach the syntax and semantic

analysis to improve the structure of words and sentence

parsing so that it can classify traffic conditions tweet of the

sentence.

Andrew Begel et al.[8] have developed a combined lexer and

parser generator which enables many classes of embedded

languages and ambiguities in spoken language. Enhanced

lexing and parsing algorithms in harmonia framework to

analyze lexical, syntactic and semantic ambiguities.

Mulik, et al. [9] have compared three parsing methods like

Conventional, Fuzzy and NLP. They have analyzed that

parsers using NLP techniques have major advantage over

classical and fuzzy parsing.

Yuncheng Jiang , Yong Tang [10] have developed a

computing with words, a formal interval type-2 fyzzy model .

Which combines interval type-2 fuzzy set Pushdown automata

theory and automaton theory, as a computational model of

computing with words. Build the extension principles to

extend from computing with values to computing with words.

III. FLALR PARSER

The FLALR parsing table development calculation is

precisely the same as the calculation for LR parsers. Just the

distinction is that a LR parsing table may have various

passages. "s" in the activity table (the left piece of the table)

demonstrates the activity "move single word from input

support onto the stack, and go to state n". "r" shows the

activity "lessen constituents on the stack utilizing guideline

n". "acc" remains for the activity "acknowledge". Goto table

(the correct piece of the table) chooses to what express the

parser ought to pursue a diminish activity.

Once a parsing table has numerous passages, deterministic

parsing is not any more conceivable; some sort of non

determinism is fundamental. Dynamic programming

approach, which is portrayed beneath, is a great deal more

productive than traditional approach and, makes FLALR

parsing practical. At the point when a procedure experiences a

numerous passage with n distinctive activities, the procedure

is part into n procedures, and they are executed independently

and parallelly. Each procedure is proceeded until either a

"blunder" or an "acknowledge" activity is found. The

procedures are, nonetheless, synchronized in the

accompanying way: When a procedure "moves" a word, it

holds up until every different procedure "move" the word.

Naturally, all procedures dependably take a gander at a similar

word. After all procedures move a word, the framework may

locate that at least two procedures are in a similar express; that

is, a few procedures have a typical state number on the highest

point of their stacks. These procedures would do the precisely

same thing until the point when that regular state number is

flown from their stacks by some "decrease" activity. In

creators approach, this normal part is prepared just once.

When at least two procedures in a typical state are discovered,

they are consolidated into one process. This consolidating

component ensures that any piece of an information sentence

is parsed close to once in a similar way." This makes the

parsing considerably more effective.

With FLALR (lookahead LR) parsing, it endeavor to decrease

the quantity of states in a LR (1) parser by consolidating

comparative states. This decreases the quantity of states to the

same as FSLR (1), yet at the same time holds a portion of the

energy of the LR (1) lookaheads.

FLALR is a software engineering acronym for look ahead left

to right. It is a strategy for parsing coding languages or

unstructured content documents. Parsing is perceiving designs

in input explanations that match leads in a language structure.

While parsing a coding, a FLALR parser:

 Uses a LOOK AHEAD symbol to aid the recognition

process,

 Reads input statements from LEFT to right,

 Makes reductions on the RIGHT first, working

backward toward the left side of the grammar.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

3rd Special Issue on Engineering and Technology | Volume VI, Issue VIIS, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 106

A. FLALR (1) Grammars

A formal meaning of what makes a syntax FLALR(1) can't be

effortlessly exemplified in an arrangement of principles, since

it needs to look past the particulars of a creation in separation

to consider alternate circumstances where the generation

shows up on the highest point of the stack and what happens

when we blend those circumstances. Rather we express that

what makes a linguistic use FLALR (1) is the nonappearance

of contentions in its parser. On the off chance that you

assemble the parser and it is without strife, it suggests the

language structure is FLALR (1) and the other way around.

FLALR (1) is a subset of LR(1) and a superset of F SLR(1). A

language structure that is not LR(1) is unquestionably not

FLALR(1), since whatever contention happened in the first

LR(1) parser will even now be available in the FLALR(1). A

syntax that is LR (1) could possibly be FLALR (1) contingent

upon whether consolidating presents clashes. A linguistic use

that is F SLR (1) is certainly FLALR (1). A linguistic use that

is not FSLR (1) could possibly be FLALR(1) contingent upon

whether the more exact lookaheads resolve the FSLR(1)

clashes. FLALR (1) has ended up being the most utilized

variation of the LR family. The shortcoming of the FSLR (1)

and LR(0) parsers mean they are just equipped for taking care

of a little arrangement of syntaxes. The broad memory needs

of LR (1) made it mull for quite a long while as a

hypothetically fascinating yet unmanageable approach. It was

the approach of FLALR (1) that offered a decent harmony

between the energy of the particular lookaheads and table

size.

B. Construction Idea

 Construct the set of LR (1) items.

 Merge the sets with common core together as

 one set, if no conflict (shift-shift or shift-reduce)

 arises.

 If a conflict arises it implies that the grammar is

 not FLALR.

 The parsing table is constructed from the

 collection of merged sets of items using the

 same algorithm for LR (1) parsing.

IV. METHODOLOGY

To compute the LR (1) configurating sets initially implies we

won't spare whenever or exertion in building a FLALR parser.

At the point when the parser is executing, it can work with the

compacted table, in this way sparing memory. The distinction

can be a request of extent in the quantity of states. However

there is a more effective procedure for building the FLALR

(1) states called well ordered combining. The thought is that

you blend the configurating sets as you go, as opposed to

holding up until the end to locate the indistinguishable ones.

Sets of states are developed as in the LR (1) technique,

however at each point where another set is brought forth, first

verify whether it might be converged with a current set. This

implies looking at alternate states to check whether one with a

similar center as of now exists. Assuming this is the case,

consolidate the new set with the current one, generally include

it typically.

G. A A .Construction Idea

Fuzzy Context-Free Grammar (FCFG), as an extension of

context-free grammar , has been introduced to express

uncertainty, ambiguity, and vagueness in natural language

fragments. Here production rules are designed by considering

noun phrase (NP), verb phrase (VP), preposition (PP), adjective

(ADJP) [11] and fuzzy membership values are assigned for

each rule. Membership values are assigned randomly to each of

these rules, finally the values for the entire set of rules for each

phrase sums up to 1.

Consider commonly used Production rules for construction of

English language sentences are as follows [12],

 1) SNP VP (1.0) 12) VP v VP (0.1)

 2) S aux NP VP (1.0) 13) VP v NP VP (0.2)

 3) NPart n (0.2) 14) VP v ADJP (0.1)

 4) NPpron (0.2) 15) VP TO VP (0.2)

 5) NP n (0.1) 16) VP v NP PP (0.1)

 6) NP NP PP (0.2) 17) VP v PP (0.1)

 7) NP propn (0.1) 18) PPprep NP (1.0)

 8) NP NOM (0.2) 19) ADJPadj (0.5)

 9) NOMadj n (1.0) 20) ADJPadj VP (0.5)

 10) VPv (0.1) 21) TO to (1.0)

 11) VPv NP (0.1)

These production rules are used further for computing f

FIRST, FOLLOW and closure of item sets. Further using

these methods FLALR algorithm is developed.

B. Computation of FIRST

To compute FIRST(X) for all grammar symbols X, apply the

following rules until no more terminals or Є can be added to

any FIRST set [12].

1. If X is a terminal then FIRST (X) = {X}

2. If X is a non terminal and X Y1Y2………Yk is a

production for some k ≥ 1, then place a in FIRST (X) if

for some I, a is in FIRST(Yi), and Є is in all of

FIRST(Y1)………..FIRST(Yi-1); that is Y1 –Yi-1 Є. If

Є is in FIRST (Yj) for all j= 1,2,…….k, then add Є to

FIRST(X) .

3. If X Є is a production then add Є to FIRST(X).[4]

*

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

3rd Special Issue on Engineering and Technology | Volume VI, Issue VIIS, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 107

C. Computation of FOLLOW

To compute FOLLOW (A) for all non terminals A, apply the

following rules until nothing can be added to FOLLOW set.

1. Place $ in FOLLOW (S) , where S is the start symbol

and $ is the input right end marker.

2. IF there is a production A α B β , then everything in

FIRST(β) except Є is in FOLLOW(B).

3. If there is a production A α B , or a production A

α B β, where FIRST(β) contains Є , then everything

in FOLLOW(A) is in FOLLOW(B) [4]

D .Computation of closure

Set of Items clousure (I)

 {

 J = I;

 repeat

 for (each item A

α .B β in J) where

λ
i = [0..1]

 for (each production B γ of G)

 if (B

 . γ is not in J)

 add B

 .. γ to J ;

Until no more items are added to J on one

round :

Return J ; }[4]

In the closure module, the parameters to be passed to the

closure computation are the state number of the new state to be

formed and the production count. A dot character is used to

keep track of the productions processed. The character next to

the dot is checked for its non-terminal. If yes, then all the

productions starting with that non-terminal are added to the

new state.

V. FLALR ALGORITHM

The following algorithm is used for construction of FLALR

parsing table. In this algorithm the similar states from FCLR

parser are merged in order to minimize the number of states.

 FLALR parsing table construction

 INPUT: An augmented grammar G‟[4].

 OUTPUT: The FLALR Parsing table functions ACTION

and GOTO for G‟.

 METHOD:

1. Construct C = (I0,I1,………..In) the collection of

 sets of LR(1) Items for G‟ .

2. For each core present among the set of LR(1)

 items, find all sets having that core, and replace

 these sets by their union.

3. Let C‟ = {J0, J1, …..Jm} be the resulting sets of

 LR (1) items. The parsing actions for state i are

 constructed from Ji in the same manner as in

 Canonical LR algorithm. If there is a parsing

 action conflict, the algorithm fails to produce a

 parser, and the grammar is said not to be LALR

 (1).

4. The GOTO table is constructed as follows. If J

 is the union of one or more sets of LR(1)

 items, that is, J = I1 ∩ I2 ∩ ………∩ Ik , then

 the cores of GOTO (I1,X), GOTO(I2, X),

 ………..,GOTO(Ik, X) are the same, since

 I1,I2,….,Ik all have the same core. Let K be

 the union of all sets of items having the same

 core as GOTO (I1,X). Then GOTO (J,X) = K.

A. FLALR item sets

Item sets construction for LALR is computed using Fuzzy

context free grammar, FIRST and FOLLOW computed for the

grammar considered. Here Item sets are constructed by using

Canonical item sets. Similar item sets are merged here to

minimize the item sets count compare to Canonical Item sets.

Goto

GOTO (I,X) where I is a set of items and X is a grammar

symbol. GOTO (I,X) is defined to be the closure of the set of

all items [A αX.β] such that [A α.Xβ] is in I. The

GOTO function is used to define transitions for a grammar,

GOTO (I, X) specifies the transition from state I under input

X.

In the goto module, first on the given input grammar symbol

X, check whether if the new state being created has the same

kernel items. If the kernel items are same, then a new state is

not created and a transition on the given input grammar

symbol is pointed back to the same state. If the kernel items

are not same then a new state is created, the closure is

calculated, thus determining the items of the new state.

B. LALR - Action and GOTO Table

Action and Goto table for LALR is constructed from First,

Follow and the computed item sets. Using this table English

sentence input is parsed to check whether the given input

English sentence is syntactically correct or not.

VI. RESULTS

The LALR parser makes use of item sets to determine its

actions. The item sets are generated by the computation of

closure and goto. Initially the computation of closure and

goto is computed using the algorithm, then the action table

consisting of shift/reduce actions is generated making use of

the results of closure and goto. Finally the max-min is

computed for the parsed result. Following Fig.1 shows the

λi

λi

λi

λi

λi

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

3rd Special Issue on Engineering and Technology | Volume VI, Issue VIIS, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 108

input sentence given to the parser and after parsing the

completely parsed sentence with its associated fuzzy value.

Input sentence and completely parsed result.

Fig . 1 Input for FLALR and output

Following figure Fig. 2 shows the Permutations generated and

parsing status. Here result shows the partially parsed status of

the sentence with its associated fuzzy value. Completely

parsed sentence is also shown with its associated fuzzy value.

Completely parsed sentence will have high fuzzy value

compare to incompletely parsed sentences. The degree of

fuzzy value varies with the number of words parsed. In a

sentence number of words parsed will represent the syntactic

correctness of the words and remaining unparsed words are

not syntactically correct. Which shows that even incompletely

parsed sentences will shows the syntactic correctness and its

degree of fuzziness.

Fig .2 Permutations and output

VII. CONCLUSIONS

In this paper author has developed a parsing technique called

Fuzzy LALR (FLALR), Here Fuzzy context free grammar is

designed for parsing Natural language. FLALR is

implemented in „C‟ Programming Language. Considering

English language sentence as an input, permutations are

generated and for the generated permutations Fuzzy LALR

algorithm is applied. Finally Fuzzy max-min technique is

applied to get the degree of fuzziness. Experimental results

have been presented here. Our research work involves the

design of fuzzy parsing algorithms and implementation to

provide the better results compare to conventional approach.

The main advantage of fuzzy parsers over conventional parser

is that it gives degree of fuzziness and syntactic correctness

for partially parsed sentences but in conventional parsers the

sentences parsed completely are only accepted and rejected

completely if it is partially parsed. Syntax analysis helps to

improve recognition rates significantly. Author concludes that

one of the major advantage of this method is , compare to

Fuzzy Simple LR and Fuzzy Canonical LR , number of states

generated are less in Fuzzy LALR. Which shows that Fuzzy

LALR provides better result compare to Fuzzy Simple LR and

Fuzzy Canonical LR.

ACKNOWLEDGMENT

We are thankful to our organization for providing an

infrastructure in conducting this research. We express our

gratitude to Dr. Ashok Shetter, Dr. P.G.Tewari , Dr P S

Hiremath and HOD Dr .G.H Joshi for their continuous support

and encouragement.

REFERENCES

[1] Alfred V Aho, “Compilers Principles, Techniques, and Tools”,

Pearson Education, pp.191-217, 2006.

[2] Jens Nilson, Welf Lowe, Johan Hall , Joakim Nivre, “Natural
Language parsing for fact exatraction from source code, ICPC-

IEEE 2009.

[3] Xian chen and Chunyu kit, “Improving parts- of -speech tagging
for context-free parsing”, Proceedings of the 5th International

Joint Conference on Natural Language Processing, pages 1260–
1268, Chiang Mai, Thailand, November 8 – 13, 2011.

[4] Masaru Tomita, “An efficient augmented context free parsing
algorithm”, Computational Linguistics, Volume 13, Numbers 1-2,

January-June 1987.

[5] Liang Chen, Naoyuki Tokunda, “A special Parser for Learning

English Composition Error Analysis & Learners‟ Model for ILTS.

[6] Jose L. Verd´u-Mas, Mikel L. Forcada, Rafael C. Carrasco, and

Jorge Calera-Rubio, “Tree k-Grammar Models for Natural
Language Modelling and Parsing”, SSPR&SPR 2002, LNCS

2396, pp. 56–63, Springer-Verlag Berlin Heidelberg 2002.

[7] Mochamad Vicky Ghani Aziz , Ary Setijadi Prihatmanto , Diotra
Henriyan , Rifki WLjaya, “Design and Implementation of Natural

Language Processing with Syntax and Semantic Analysis for
Extract Traffic Conditions from Social Media Data”, 2015 IEEE

5th International Conference on System Engineering and
Technology, Aug. 10 - 11, UiTM, Shah Alam, Malaysia , 978-1-

4673-6713-4/15/$31.00 ©2015 IEEE

[8] Andrew Begel, Susan L. Graham, “Language Analysis and Tools
for Ambiguous 1 Input Streams”, Electronic Notes in Theoretical

Computer Science 110 (2004) 75–96

[9] Sunanda Mulik, Sheetal Shinde, Smita Kapase ,” Comparison of

Parsing Techniques for Formal Languages”, International Journal
on Computer Science and Engineering (IJCSE) ISSN: 0975-3397 ,

VOL 3 No 4 Apr 2011.

[10] Yuncheng Jiang , Yong Tang, “An interval type-2 fuzzy model of

computing with words”,Information Sciences 281 (2014) 418–442

[11] Erkki Luuk, “The noun/verb and predicate/argument structures”,

Lingua 119 ,Elsevier Publication , pp 1707–1727, 2009.

[12] Suvarna G Kanakaraddi,V Ramaswamy,” Natural Language

Parsing using Fuzzy Simple LR (FSLR) Parser”, 978-1-4799-
2572-8/14/$31.00_c 2014 IEEE.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

3rd Special Issue on Engineering and Technology | Volume VI, Issue VIIS, July 2017 | ISSN 2278-2540

www.ijltemas.in Page 109

AUTHORS‟ PROFILES

Suvarna G Kanakaraddi : Bachelor degree in computer

science and Masters degree in Computer science from VTU

Belgaum,Karnataka, india. Pursuing research in Artificial

Intelligence in VTU Belgaum. Working as Associate

professor in Computer Science and Engineering. Areas of

interest include Data mining, Cloud Computing , Storage

technology. Computer Networks. Working as SPOC for EMC

Bangalore.

Suvarna S Nandyal : Bachelor degree in computer science

and Masters degree in Computer science from VTU

Belgaum,Karnataka, India. Completed Ph.D in Image

Processing domain , from JNTU Hyderabad. Working as

Professor and Head in Computer Science and Engineering and

Research center Head for Computer Science & Engineering.

Areas of interest include Image Processing, Data mining,

Cloud Computing, and Computer Networks.

