
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue I, January 2018 | ISSN 2278-2540

www.ijltemas.in Page 191

Code Clone Detection using Graphs and Adjacency

Structures
Mukesh Kumar

a
, Lalit Kumar Sagar

b
, Saurabh Kumar

c

a, b, c
Assistant Professor, Dr. K.N.M.I.E.T, India

Abstract: - Code clone detection is the common aspect of reuse

activity. Copying code fragments and then reuse with or without

modifications are common activities in software development.

This type of reuse approach of existing code is called code

cloning and the pasted code fragment is called a clone of the

original [1].Existing approaches does not make use of adjacency

structures and their properties. In this paper we present an

efficient way of finding code clones by using adjacency structure.

We developed a directed graph of the source code and parsed the

information into adjacency structure. By using the properties of

adjacency structure we can find the in-degree and out-degree of

a particular directed graph. Our insight is to deduce the flow on

a particular node of the directed graphs to find the similarity

between the nodes of the directed graph. We implemented this

algorithm practically by using the tool named as control flow

graph factory.

Keywords: Control flow graphs; Adjacency structure; In-degree;

Out-degree.

I. INTRODUCTION

1.1 Code Cloning

Code duplication or copying a code fragment and then reuse

by pasting with or without any modifications is a well known

code smell in software maintenance. Several studies show that

about 5% to 20% of software systems can contain duplicated

code, which are basically the results of copying existing code

fragments and using then by pasting with or without minor

modifications [1].

A code fragment CF1, which is a sequence of code line is

clone to another code fragment CF2, if they have similar

properties i.e. F (CF1) = F(CF2), where “F” is a similar

function .Two fragments that have similar properties are

referred as clone pair (CF1, CF2) and when many fragment

are similar then they form clone class or clone group [2].

1.2 Type of clones:-

There are two main kinds of similarity between code

fragments. Fragments can be similar based on the similarity of

their textual similarity [3] [4] [5], or they can be similar based

on their functionality (independent of their text) [6] [7] [8]

[9]. The first kind of clone is often the result of copying a

code fragment and pasting into another location. In the

following we provide the types of clones based on both the

textual (Types 1 to 3) [10], and functional (Type 4) [11]

similarities.

Type-1: Identical code fragments except for variations in

whitespace, layout and comments.

Type-2: Syntactically identical fragments except for variations

in identifiers, literals, types, whitespace, layout and

comments.

Type-3: Copied fragments with further modifications such as

changed, added or removed statements, in addition to

variations in identifiers, literals, types, whitespace, layout and

comments.

Type-4: Two or more code fragments that perform the same

computation but are implemented by different syntactic

variants.

II. AUTHOR ARTWORK

A tool “Control Flow Graph Factory” is used to generate

control flow graphs. This tool generates different types of

graphs like Byte code graphs, Basic Block Graph. A basic

introduction of Control Flow Graph Factory is given below.

2.1 Control Flow Graph Factory

Control Flow Graph Factory is an Eclipse plug-in which

generates control flow graphs from java code, edit them and

export to GraphXML, DOT or several image formats.

 Features

 Automatic generation of several types of

control flow graphs from Java byte code

like:

 Byte Code Graphs

 Source Code Graphs

 Basic Block Graphs

 Editing of control flow graphs

 Move, create, delete, rename, ... nodes

 Multiple algorithms for automatic layout (serial,

hierarchical)

http://www.drgarbage.com/control-flow-graph-factory-terminology.html
http://www.drgarbage.com/control-flow-graph-factory-terminology.html#bytecodegraph

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue I, January 2018 | ISSN 2278-2540

www.ijltemas.in Page 192

 Export in GraphXML, DOT format or as an image

(JPEG, BMP, ICO, PNG)

 Printing support

There are several steps to generate a control flow graph.

These steps are explained below.

1. To generate the graph for the method “main” select the

method in “package explorer” and open the context menu

"Create Control Flow Graph". Select submenu "Source code

graph" to generate a source code graph for this method.

2. Generate a byte code or a basic code graph in the same

way. For that use the context menu in the package explorer

"Create Control Flow Graph/Byte code graph" or "Create

Control Flow Graph/Basic block graph.

3. For export the graph in DOT, GraphXML format or to an

image use the export functions provided by the Control flow

graph Factory. For finding the geometry information of the

graphs (may be basic block, source code, byte code) export

the graph by export geometric info. This geometry

information, gives the information about all the vertices and

edges which are connected with each other. For example:-

Take the java code that print hello using “While” loop.

Package test1;

Public class tes1 {

Public static void main(String[] args) {

 int i=0;

 while(i<10)

 {

 System.out.print ("hello");

 }}}

Take a second java code that print hello using “For” loop.

Package test2;

Public class tse2 {

Public static void main (String [] args)

{

int i=0;

 for (i=0;i<10; i++)

{

 System.out.print ("hello");

 }}}

The Basic block Graph of “While” loop code is:-

Fig.1 Basic Block Graph

The exported information of the graph is:-

2 [label="B1"]

 3 [label="B2"]

 4 [label="B3"]

 5 [label="B4"]

 6 [label="EXIT"]

 7 [label="START"]

 7 -> 2 [label=""]

 2 -> 3 [label=""]

 4 -> 3 [label=""]

 3 -> 4 [label="false"]

 3 -> 5 [label="true"]

5 -> 6 [label=""]

Similarly the Basic Block Graph of “For” loop is:-

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue I, January 2018 | ISSN 2278-2540

www.ijltemas.in Page 193

Fig.2 Basic Block Graph

The adjacency matrix for the exported information is in the

below matrix (Fig. 3).

Fig.3. Adjacency Matrix.

This means 6 nodes are presented in the graph and

 Node 7 is connected with node 2.

 Node 2 is connected with node 3.

 Node 4 is connected with node 3.

 Node 3 is connected with node 4.

 Node 3 is connected with node 5.

 Node 5 is connected with node 6.

So the exported information is used in the adjacency matrix to

find the” out-degree” of a graph.

 An adjacency matrix is created on the basis of

exported information.

 Take the transpose of adjacency matrix.

 Multiplication of adjacency matrix with its transpose

provides the information about its out-degree and of

the directed graph.

Again the exported information is used in the adjacency

matrix to find the “in-degree” of a graph.

 An adjacency matrix is created on the basis of

exported information.

 Take transpose of adjacency matrix.

 But at that time we multiply transpose of matrix and

adjacency matrix. The multiplication of transpose of

matrix and adjacency matrix gives in-degree of the

graph.

The above process gives the “in-degree” and “out-degree” of

a graph. “In-degree” and “out-degree” of two graphs is

compared according to “in-degree” of one graph with “in-

degree” of second graph, and similarly for “out-degree”.

The above algorithm gives the information about which nodes

are similar in two graphs, and how the information flows from

one node to another node, and how many “in-degree” and

“out-degree” each node have. Then comparison of these two

graphs is done on the basis of their in-degree and out-degree.

Here is an example to understand the following procedure:-

Example 1 includes an algorithm to find the out-degree of a

graph using following steps:

1. Take a directed graph with 3 nodes.

2. Draw an adjacency matrix for that graph.

3. Take the transpose of the adjacency matrix which is

obtained from the graph.

4. Multiply adjacency matrix and transpose of

adjacency matrix. (A.A
T
).

5. Find a new matrix, the new matrix diagonal element

gives the out-degree of that graph.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue I, January 2018 | ISSN 2278-2540

www.ijltemas.in Page 194

Fig.4 Directed graph

 1 2 3

1 0 1 1

2 0 0 0

3 0 1 0

Fig.5 Adjacency Matrix

 1 2 3

1 0 0 0

2 1 0 1

3 1 0 0

Fig.6 Transpose of adjacency matrix

 1 2 3

1 2 0 1

2 0 0 0

3 1 0 1

Fig.7 (A.A
T
)

Example 2 uses an algorithm to find the in-degree of a graph:-

1. Take a directed graph with 3 nodes.

2. Draw an adjacency matrix for that graph.

3. Take the transpose of the matrix which is obtained

from the graph.

4. Multiply transpose of adjacency matrix and

adjacency matrix. (A
T
.A).

5. Find a new matrix, the new matrix diagonal element

gives the in-degree of that graph.

When in-degree and out-degree of a graph is available,

compare it with two graphs.

Fig.8 Directed Graph

Fig.9 Adjacency Matrix

 1 2 3

1 0 0 0

2 1 0 1

3 1 0 0

Fig.10 Transpose of Adjacency matrix

 1 2 3

1 0 0 0

2 0 2 1

3 0 1 1

Fig.11 (AT.A)

The above algorithm finds in-degree and out-degree of any

graph, so based on in-degree and out-degree algorithm can

compares two graphs, and find out which node is similar to

each other.

This is the mathematical approach to find out the clones with

similar nodes from a source code.

Psuedo code

Input :- 2d array of strings

output :- matrix which contains the outdegree in 1
st
 row and

indegree in 2
nd

 row of a graph.

 for aa←1 to count_of_lines do

 If text[aa].contains(“->”)

 adj[0] = Source_of_edge

 adj[1] = target_of_edge

 l++

 end if

 end for

//Calculating minimum and maximum

 for aa←1 to l

 for j←0 to 1

 if adj[aa][j] > max

 max = adj[aa][i]

 endif

 if (adj[aa][j] < min)

 1 2 3

1 0 1 1

2 0 0 0

3 0 1 0

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue I, January 2018 | ISSN 2278-2540

www.ijltemas.in Page 195

 min = adj[j][k]

 endif

 endfor

 endfor

 //Forming Adjacency

 for j←i-1 to 0

 adjacency[adj[j][0] - min][adj[j][1] - min] = 1

 endfor

 //Forming transpose

 for j←0 to max-min

 for k←0 to max-min

 if adjacency[j][k]==1

 adjacencyT[k][j] =1

 endif

 end for

 endfor

 //Mutiplying Adjacency and its transpose for outdegree

 for i1←0 to max-min

 for j←0 to max-min

 for k←0 to max-min

 outdegree[i1][j] += adjacency[i1][k]

*adjacencyT[k][j]

 endfor

 endfor

 endfor

//Mutiplying transpose and Adjacency for indegree

 for i1←0 to max-min

 for j←0 to max-min

 for k←0 to max-min

 indegree[i1][j] += adjacencyT[i1][k]

*adjacency[k][j]

 end for

 end for

 end for

// forming a club-up matrix which contains the outdegree in 1
st

row and indegree in 2
nd

 row

for i1← 0 to max - min

 clubup[0][i1] = outdegree[i1][i1]

 clubup[1][i1] = indegree[i1][i1]

endfor

REFERENCES

[1]. C.K. Roy, J.R. Cordy, “A survey on software clone detection

research”, Technical Report: 541, 2007, p. 115

[2]. C.k.Roy, J. Cordy, and R. Koschke, “Comparison and Evaluation

of Code Clone Detection Techniques and Tools”: A qualitative

Approach. Sci. Comp. Prog., 74(7) (2009), 470–495.

[3]. Stefan Bellon. Detection of Software Clones Tool Comparison

Experiment. Tool Comparison Experiment presented at the 1st

IEEE International Workshop on Source Code Analysis and

Manipulation, Montreal, Canada, October 2002.

[4]. Stefan Bellon.Vergleich von techniken zur erkennung duplizierten

quellcodes. Diploma Thesis, No. 1998, University of Stuttgart

(Germany), Institute for Software Technology, September 2002.

[5]. Rainer Koschke, Raimar Falke and Pierre Frenzel. Clone

Detection Using Abstract Syntax Suffix Trees. In Proceedings of

the 13th Working Conference on Reverse Engineering

(WCRE’06), pp. 253-262, Benevento, Italy, October 2006.

[6]. Raghavan Komondoor and Susan Horwitz. Effective, Automatic

Procedure Extraction. In Proceedings of the 11th IEEE

International Workshop on Program Comprehension (IWPC’03),

pp. 33-42, Portland, Oregon, USA, May 2003.

[7]. Jens Krinke. Identifying Similar Code with Program Dependence

Graphs. In Proceedings of the 8th Working Conference on

Reverse Engineering (WCRE’01), pp. 301-309, Stuttgart,

Germany, October 2001.

[8]. Neil Davey, Paul Barson, Simon Field, Ray J Frank. The

Development of a Software Clone Detector. International Journal

of Applied Software Technology, Vol. 1(3/4):219- 236, 1995

[9]. Gilad Mishne and Maarten de Rijke. Source Code Retrieval Using

Conceptual Similarity. In Proceeding of the 2004 Conference on

Computer Assisted Information Retrieval (RIAO’04), pp. 539-

554, Avignon (Vaucluse), France, April 2004.

[10]. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo,

“Comparison and evaluation of clone detection tools” IEEE

Transactions on Software Engineering 33 (9) (2007) 577_591.

[11]. M. Gabel, L. Jiang, Z. Su, “Scalable detection of semantic clones”,

in: Proceedings of the 30th International Conference on Software

Engineering, ICSE 2008, 2008, pp. 321_330.

