
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 58

RTOS System Scheduling With WCET Estimation

Using EDF-VD Algorithm
Sethupathi.M

1
, Sivaramakrishnan.N

2
, Theeijitha.S

3
, G.Naveen Balaji

4

1,2,3
UG Student, Department of ECE, SNS College of Technology, Coimbatore-641035, Tamil Nadu, India

4
Assistant Professor, Department of ECE, SNS College of Technology, Coimbatore-641035, Tamil Nadu, India

I. INTRODUCTION

System is a way of working, organizing or doing one or more

tasks according to the fixed plan, program or set of rules. A

system is also an arrangement in which all its units assemble

and work together according to the plan or program. An

embedded system is combined working of hardware and

software or additional mechanical or technical component to

perform desired function. Any sort of device which includes

programmable computer but itself is not intended to be

general purpose computer is said to be embedded system.

The lower layer of an embedded system is printed circuit

board that includes busses and semiconductor devices. The

upper layer is mainly application layer in between these two

layers there are another two essential layers called device

drivers and communication protocols. These features enable

embedded systems to be relatively static and simple in

functionality. However, there is a requirement for low cost,

small physical footprint and negligible electrical or electronic

radiation and energy consumption. Simultaneously they need

to be physically rugged and impervious to external electrical

and electronic interference.

Therefore, embedded systems invariably are limited resources

available in terms of memory, CPU, screen size, a limited set

(or absence) of key inputs, diskless operations-these

parameters play a crucial part during the design, development

and testing of such systems.

1.1 Embedded System Characteristics

In general, embedded systems are designed to perform any

particular predefined task that must meet any real-time

constraint. The main difference between a computer and an

embedded system is a computer is used to perform a specific

task that is pre-defined by the manufacturers.

 Here, meeting all the real-time system constraints is a very

important characteristic of an embedded system. A real-time

constraint is divided into two parts.one is hard real-time

system and the other is soft real-time system. Hard real-time

system means it must meet all its deadlines with a zero degree

of flexibility and it is acceptable to be little flexible in the soft

real-time system. It is not necessary to be standalone always

for the embedded devices. Actually, most of the embedded

systems are integrated within a large computerised device.

Devices such as MP3s, cameras and TV remotes are the

examples of standalone embedded devices.

The term ‗firmware‘ is used to refer the program instructions

written for embedded systems. It is stored in ROM (read only

memory) or in a flash memory chip. Resources like computer

hardware do not need much time to run. Another important

characteristic is the dedicated user interface.It may range from

no user interface to complex graphical user interface. Hand

held device such as joystick which needs to be pointed with

the screen is a good example of user interface systems. Size

and weight should be less for an embedded device. For that

reason, microcontrollers are used in embedded devices to

deliver the best performance on demand. Manufacturer

companies try to keep the lowest price of their products.

Using sensors and actuators it may be also connected to

physical environment.

1.2 Embedded Architecture

An embedded system is built around a processor. The central

processing unit does the necessary computation based on the

input it receives from various external devices. The

functionality of the CPU is an embedded system is same as

the functionality of the CPU in a desktop, except that the CPU

in an embedded system is less powerful.

The processor has limited internal memory, and if this internal

memory is not sufficient for a given application external

memory devices are used. The hardware also includes any

components that facilitates the user-application interaction,

such as display units, keypads etc.

Figure 1. System Concept of Embedded Architecture

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 59

A number of 16-bit and 32-bit microprocessors are available

from ARM, Atmel, Intel, Motorola, National Semiconductors,

etc. In order to develop an embedded system with these

processors, you great deal of peripheral circuitry. However,

microprocessors higher clock speeds and word-length, so they

are capable of addressing higher memory. These processors

are used for high-end applications such as handheld

computers, Internet access Devices, etc.

The memory used in embedded systems can be either internal

or external. The internal memory of a processor is very

limited. For small applications, if this memory is sufficient,

there is need to used external memory.

II. BACKGROUND

2.1 Cyber Physical Systems

Unlike more traditional embedded systems, a full-fledged

CPS is typically designed as a network of interacting elements

with physical input and output instead of as standalone

devices. The notion is closely tied to concepts of robotics and

sensor networks with intelligence mechanisms proper of

computational intelligence leading the pathway.

Figure 2. Architecture of Cyber Physical Systems

Ongoing advances in science and engineering will improve

the link between computational and physical elements by

means of intelligent mechanisms, dramatically increasing the

adaptability, autonomy, efficiency, functionality, reliability,

safety, and usability of cyber-physical systems.This will

broaden the potential of cyber-physical systems in several

dimensions, including: intervention (e.g., collision avoidance);

precision (e.g., robotic surgery and nano-level

manufacturing); operation in dangerous or inaccessible

environments (e.g., search and rescue, firefighting, and deep-

sea exploration; coordination (e.g., air traffic control, war

fighting); efficiency (e.g., zero-net energy buildings); and

augmentation of human capabilities (e.g., healthcare

monitoring and delivery).

Figure 3. Work Flow Diagram of CPS

2.1.1 Definition

A cyber‐physicalsystem (CPS) integratescomputing,

communication and storage capabilities with monitoring and /

or control of entities in the physical world, and must do so

dependably, safely, securely, efficientlyand in

real‐time.Cyber‐physical systems will transform how we

interact with the physical world just like the Internet

transformed how we interact with one another.

III. SCHEDULING

In computing, scheduling is the method by which work

specified by some means is assigned to resources that

complete the work. The work may be virtual computation

elements such as threads, processes or data flows, which are

in turn scheduled onto hardware resources such as processors,

network links or expansion cards.

A scheduler is what carries out the scheduling activity.

Schedulers are often implemented so they keep all computer

resources busy (as in load balancing), allow multiple users to

share system resources effectively, or to achieve a target

quality of service. Scheduling is fundamental to computation

itself, and an intrinsic part of the execution model of a

computer system; the concept of scheduling makes it possible

to have computer multitasking with a single central processing

unit (CPU).

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 60

Figure 4. Task Arrival and Task Completed in a Scheduler

A scheduler may aim at one or more of many goals, for

example: maximizing throughput (the total amount of work

completed per time unit); minimizing wait time (time from

work becoming enabled until the first point it begins

execution on resources); minimizing latency or response time

(time from work becoming enabled until it is finished in case

of batch activity or until the system responds and hands the

first output to the user in case of interactive activity) or

maximizing fairness (equal CPU time to each process, or

more generally appropriate times according to the priority and

workload of each process). In practice, these goals often

conflict (e.g. throughput versus latency), thus a scheduler will

implement a suitable compromise. Preference is measured by

any one of the concerns mentioned above, depending upon the

user's needs and objectives.

In real-time environments, such as embedded systems for

automatic control in industry (for example robotics), the

scheduler also must ensure that processes can meet deadlines;

this is crucial for keeping the system stable. Scheduled tasks

can also be distributed to remote devices across a network and

managed through an administrative back end.

3.1 Real Time Operating System

A real-time operating system (RTOS) is an operating system

(OS) intended to serve real-time applications that process data

as it comes in, typically without buffer delays. RT systems

require specific support from OS. The operating system

processing time requirements are measured in tenths of

seconds or the shorter increments of time. A real time system

is a time bound system which has well defined fixed time

constraints. Processing must be done within the defined

constraints or the system will fail. They either are event driven

or time sharing. Event driven systems switch between tasks

based on their priorities while time sharing systems switch the

task based on clock interrupts. Most RTOS‘s use a pre-

emptive scheduling algorithm. An RTOS has an advanced

algorithm for scheduling. Scheduler flexibility enables a

wider, computer-system orchestration of process priorities,

but a real-time OS is more frequently dedicated to a narrow

set of applications.

Real-Time Scheduling Algorithms are a special class of

algorithms of which it is required that they can guarantee a

process will be done before its deadline. The only way these

algorithms can work is if they at least know when the deadline

for a process is, and how much the process takes of the

system. Only if the system is not overloaded (subjective term)

can the threads be guaranteed to finish before their deadline.

Each task has to be scheduled Xt times a second, or every Yt

milliseconds (Yt = 1000 / Xt). Each run of that task takes at

most Zt milliseconds. This task then creates a load of Lt = Zt /

Yt.

The system as a whole has a load L, which is the sum of all

task-loads: L = E Lt. If the system load exceeds 0.7 (in some

rare cases it can be slightly larger, but we don't count them)

the system is unschedulable using Rate Monotonic

Scheduling. If this system load exceeds 1.0 it is unschedulable

for any real-time system. Note that for normal systems any

load is possible, including the ones that are extremely large.

They will make the system very unusable though.

3.1.1 Kernel

Figure 5. Architecture of Kernel

A kernel is the central part of the operating system that

manages the operation of the computer and the hard ware

most notably memory and CPU unit.There are two types of

kernels. A microkernel, which only contains basic

functionality.A monolithic kernel, which contains many

device drivers.Itfunctions at a basic level, communicating

with hardware and managing resources, such as RAM and the

CPU. The kernel performs a system check and recognizes

components, such as the processor, GPU, and memory. It also

checks for any connected peripherals.Kernel is the software

responsible for running programs and providing secure access

to the machine's hardware.Since there are many programs, and

resources are limited, the kernel also decides when and how

long a program should run.

3.1.2 Process

The process scheduling is the activity of the process manager

that handles the removal of the running process from the CPU

and the selection of another process on the basis of a

particular strategy. Process scheduling is an essential part of a

Multiprogramming operating systems. Operating systems

allow more than one process to be loaded into the executable

memory at a time and the loaded process shares the CPU

using time multiplexing. Process Scheduling Queues. The OS

maintains all PCBs in Process Scheduling Queues. The OS

maintains a separate queue for each of the process states and

PCBs of all processes in the same execution state are placed in

the same queue. When the state of a process is changed, its

PCB is unlinked from its current queue and moved to its new

state queue. Job queue − This queue keeps all the processes in

https://en.wikipedia.org/wiki/Scheduling_(computing)

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 61

the system. Ready queue − This queue keeps a set of all

processes residing in main memory, ready and waiting to

execute. A new process is always put in this queue .Device

queuesis the processes which are blocked due to

unavailability of an I/O device constitute this queue.

3.2 RTOS Scheduling Models

Cooperative multitasking

Preemptive multitasking

Rate monotonic scheduling

Round robin scheduling

3.2.1 Cooperative Multitasking

Cooperative multitasking, also known as non-preemptive

multitasking, is a style of computer multitasking in which

the operating system never initiates a context switch from a

running process to another process. Instead, processes

voluntarily yield control periodically or when idle or

logically blocked in order to enable multiple applications to be

run concurrently. This type of multitasking is called

"cooperative" because all programs must cooperate for the

entire scheduling scheme to work. In this scheme, the process

schedulerof an operating system is known as a cooperative

scheduler, having its role reduced down to starting the

processes and letting them return control back to it

voluntarily.

3.2.2 Preemptive Multitasking

The term preemptive multitasking is used to distinguish

a multitasking operating system, which permits preemption of

tasks, from a cooperative multitasking system wherein

processes or tasks must be explicitly programmed

to yield when they do not need system resources.In simple

terms: Preemptive multitasking involves the use of

an interrupt mechanism which suspends the currently

executing process and invokes a scheduler to determine which

process should execute next. Therefore, all processes will get

some amount of CPU time at any given time.In preemptive

multitasking, the operating system kernel can also initiate

a context switch to satisfy the scheduling policy's priority

constraint, thus preempting the active task. In general,

preemption means "prior seizure of". When the high priority

task at that instance seizes the currently running task, it is

known as preemptive scheduling.

3.2.3 Rate Monotonic Scheduling

Rate Monotonic Scheduling is a way to schedule Real-Time

threads in such a way that can be guaranteed that none of the

threads will ever exceed their deadline.The load of the system

may vary, but there is autilisation-based test that, if satisfied,

guarantees that the system will always be schedulable. As an

example the utilisation limit for a system with one process is

100% (as there is no need for preemption). The utilisation

limit for a system with 3 processes is approximately 69%.

3.2.4 Round Robin Scheduling

Round-robin (RR) is one of the algorithms employed

by process and network schedulers in computing. As the term

is generally used, time slices (also known as time quanta) are

assigned to each process in equal portions and in circular

order, handling all processes without priority (also known

as cyclic executive). Round-robin scheduling is simple, easy

to implement, and starvation-free. Round-robin scheduling

can also be applied to other scheduling problems, such as data

packet scheduling in computer networks. It is an operating

system concept.

IV. LITERATURE SURVEY

4.1 Introduction

 The paper provides the overview of the previous

research on several ways and the methodologies to estimate

the WCET estimation.The below paper will estimate the

WCET for periodic,aperiodic and sporadic task using EDF

algorithm.

4.2 Summary

Mixed-Criticality Scheduling Theory: Scope, Promise, and

Limitations SanjoyBaruah Washington University in St.

Louis-2018

 In this paper Safety-critical Systems are typically

subject to stringent correctness requirements; these

requirements may be considered from two distinct (though

related) perspectives: a priori verification, and runtime

robustness. The disadvantage in this paper is

Misunderstandings arising from this unfortunate ambiguity in

terminology seem to lie at the heart of many of the arguments

that are made against the use of MCSh in practice. Although it

is probably too late to change terminology, it is important that

this ambiguity be highlighted by advocates of MCSh when

they seek to convince practitioners to take a closer look.

Robustness Results Concerning EDF Scheduling upon

Uniform Multiprocessors SanjoyBaruah, Member, IEEE,

Shelby Funk, Student Member, IEEE, and Joe Goossens-2003

 In this paper, we study the scheduling of hard-real-

time systems upon uniform multiprocessor platforms. In

contrast to identical multiprocessors, in which it is assumed

that all processors are equally powerful, each processor in a

uniform multiprocessor machine is characterized by a speed

or computing capacity, with the interpretation that a job

executing on a processor with speed s for t time units

completes units of execution. We consider the scheduling of

hard-real-time systems on uniform multiprocessor platforms

which allow for preemptions and interprocessor migrations

(i.e., a job executing on a processor may be interrupted at any

instant and its execution resumed later on the same or a

https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Yield_(multithreading)
https://en.wikipedia.org/wiki/Blocking_(computing)
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Multitasking_operating_system
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://en.wikipedia.org/wiki/Yield_(multithreading)
https://en.wikipedia.org/wiki/Interrupt_mechanism
https://en.wikipedia.org/wiki/Scheduler_(computing)
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Scheduling_policy
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice
https://en.wiktionary.org/wiki/priority
https://en.wikipedia.org/wiki/Cyclic_executive
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 62

different processor with no cost or penalty), but forbid job-

level parallelism—at any instant in time, each job may be

executing upon at most one processor. The disadvantage in

this paper is the total time complexity of the implementation

given in Fig. 1 is Oðm3Þ, where m denotes the number of

processors in the platform 1 upon which EDF-feasibility is

being tested. This follows from the observations that the

implementation of algorithm for determining whether a real-

time instance, known to be feasible upon a uniform

multiprocessor with fastest processor having speed and total

computing capacity b, is EDF-feasible upon a uniform

multiprocessor platform.

Scheduling Real-Time Mixed-Criticality Jobs SanjoyBaruah,

Vincenzo Bonifaci, GianlorenzoD‘Angelo, Haohan Li,

Alberto Marchetti-Spaccamela, Nicole Megow, and Leen

Stougie-2012

 Many safety-critical embedded systems are subject to

certification requirements; some systems may be required to

meet multiple sets of certification requirements, from different

certification authorities. Certification requirements in such

―mixed-criticality‖ systems give rise to interesting scheduling

problems,that cannot be satisfactorily addressed using

techniques from conventional scheduling theory. In this paper,

we study a formal model for representing such mixed-

criticality workloads. We demonstrate first the intractability of

determining whether a system specified in this model can be

scheduled to meet all its certification requirements, even for

systems subject to merely two sets of certification

requirements. Then we quantify, via the metric of processor

speedup factor, the effectiveness of two techniques,

reservation-based scheduling and priority-based scheduling,

that are widely used in scheduling such mixed-criticality

systems, showing that the latter of the two is superior to the

former. We also show that the speedup factors we obtain are

tight for these two techniques.The disadvantage in this paper

is assigning priorities according to criticality may result in

very poor processor utilization. An innovative slack-aware

approach is proposed that builds atop priority-based

scheduling (with priorities not necessarily assigned according

to criticality).

V. EXISTING SYSTEM

5.1 EDF

Earliest deadline first (EDF) or least time to go is a dynamic

priority scheduling algorithm used in real-time operating

systems to place processes in a priority queue. Whenever a

scheduling event occurs (task finishes, new task released, etc.)

the queue will be searched for the process closest to its

deadline. This process is the next to be scheduled for

execution.EDF is an optimal scheduling algorithm on

preemptive uniprocessors, in the following sense: if a

collection of independent jobs, each characterized by an

arrival time, an execution requirement and a deadline, can be

scheduled (by any algorithm) in a way that ensures all the jobs

complete by their deadline, the EDF will schedule this

collection of jobs so they all complete by their deadline.

There is a significant body of research dealing

with EDF scheduling in real-time computing; it is possible to

calculate worst case response times of processes in EDF, to

deal with other types of processes than periodic processes and

to use servers to regulate overloads.EARLIEST DEADLINE

FIRST

Each task in an EDF scheduler is assigned a _deadline_ (e.g. a

moment in the future at which the task must be completed).

Every time a task is inserted in the system or completed, the

scheduler looks for the task which has the closest deadline and

selects it for execution. In order to ensure that the scheduler is

still able to meet each deadline, a 'monitor must evaluate if

each new task doesn't overload the system and deny execution

if it will do so.

Figure 6. Earliest Deadline First

In order to implement EDF-based system, one will have to

know both the _deadline_ of the task (which could optionally

be computed as "no more than X ms in the future") and the

expected time needed to perform the task (required by the

monitor). QoS network routers usually implement variants of

EDF scheduling.

Again, there is autilisation based test for EDF systems. The

limit is simpler however - it is always 100%, no matter how

many processes are in the set. This makes dynamic analysis of

schedulability easier. Not only that, but the EDF utilisation

test is both sufficient and necessary, so can be relied on to

provide an accurate indication of schedulability.

https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Real-time_computing

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 63

For more information, see "Real time systems and

programming languages" by Burns &Wellings.

5.2 Estimation of WCET

 The worst case response time of tiis equal to the

smallest t satisfying the following equality.

𝑡 = 𝐶𝑖 +
𝑡

𝑇𝑗
 𝐶𝑗.

𝑗<𝑖

Ci-worst case execution time

Di-Relative deadline parameter

Ti-Inter arrival separation time

The worst case workload of the i highest priority tasks over an

interval of length t,

𝑡

𝑇𝑗
 𝐶𝑖

𝑖

The worst case idle time of the I highest priority tasks over an

interval of length t,

𝐻𝑖 𝑡 = 𝑡 − 𝑊(𝑡)

The pseudo inverse function Xi(c) of Hi(t) is the smallest,

𝑋𝑖 𝑐 = min
𝑡

{:𝐻𝑖(𝑡) ≥ 𝑐}

The worst case response time Ri of task is given by,

𝑅𝑖 = max
𝑘=1,2,…

 𝑋𝑖 − 1 𝑘𝐶𝑖 − 𝑘 − 1 𝑇𝑖 …

VI. PROPOSED SYSTEM

6.1 Shortest Remaining Time

Shortest remaining time, also known as shortest remaining

time first (SRTF), is a scheduling method that is a preemptive

version of shortest job next scheduling. In this scheduling

algorithm, the process with the smallest amount of time

remaining until completion is selected to execute. Since the

currently executing process is the one with the shortest

amount of time remaining by definition, and since that time

should only reduce as execution progresses, processes will

always run until they complete or a new process is added that

requires a smaller amount of time.

Figure 7. Shortest Remaining Time First

6.2 EDF-VD

 In the existing system they have determined the

WCET estimation using the EDF algorithm for sporadic task.

In the proposed system they have determined the WCET

estimation using the EDF-VD algorithm. The EDF-VD

scheduling algorithm has implicit deadline. Implicit deadline

is defined as a task is said to be constrained if the relative

deadline is less or equal to its period. The task becomes an

implicit deadline task if the relative deadline is exactly equal

to the period. If the task is neither constrained nor implicit,

then it is arbitrary. This thesis considers the scheduling of

implicit deadline periodic task systems.EDF-VD is the

maximum amount of time a job may take to execute after it

becomes eligible for execution. This time must be less than

the relative deadline of the task or in the worse case be equal

to it. It is a run time algorithm which has virtual dead line and

the scaling factor. The speedup bound for EDF-VD is a first

attempt which has better bound and the pragmatic

enhancements to EDF-VD. The speed optimality of the EDF-

VD is high.

6.2.1 Task Response Time

The task response time has been estimated for the processor,

K
th

 job in task Ti

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 64

𝑅𝑖 = max
𝑘=1,….𝑘

{𝑋𝑖 − 1 𝑘𝐶𝑖 − 𝑘 − 1 𝑇𝑖}

K*<+∞

𝑅𝑖𝑘 = 𝑋𝑖 − 1 𝑘𝐶𝑖 + 𝐼 − 𝑘 − 1 𝑇𝑖
≥ 𝑋𝑖 − 1 𝑘𝐶𝑖 − 𝑘 − 1 𝑇𝑖

It is non decreasing function,

𝑅𝑖 ≥ max
𝑘>𝑘∗

 𝑅𝑖𝑘 ≥ max
𝑘>𝐾∗

 𝑋𝑖 − 1 𝑘𝐶𝑖 − 𝑘 − 1 𝑇𝑖

We assume that,

∀𝑥 ∷ 𝑓𝑙𝑏(𝑥) ≤ 𝑓(𝑥) ≤ 𝑓𝑢𝑏(𝑥)

For any upper bound on the workload, there is a

corresponding upper bound on the worst case response time

Ri,

𝑊𝑖
𝑢𝑏 (𝑡) ≥ 𝑊𝑖(𝑡)

Relationship for idle time,

𝐻𝑖
𝑙𝑏 𝑡 = 𝑡 −𝑊𝑖

𝑢𝑏 𝑡 ≤ 𝑡 −𝑊𝑖 𝑡 = 𝐻𝑖(𝑡)

The relationship between pseudo inverse function,

𝑋𝑖
𝑢𝑏 𝑐 = min

𝑡
{𝑡:𝐻𝑖

𝑙𝑏 (𝑡) ≥ 𝑐} ≥ min
𝑡

 𝑡:𝐻𝑖 𝑡 ≥ 𝑐 = 𝑋𝑖(𝑐)

𝑅𝑖
𝑢𝑏 = max

𝑘=1,2,…..
{𝑋𝑖−1

𝑢𝑏 𝑘𝐶𝑖 − 𝑘 − 1 𝑇𝑖} ≥ 𝑅𝑖

The maximum amount of time that the processor execute a

task,

𝑊𝑖 𝑡 = 𝑤𝑗 (𝑡)
𝑡

𝑗=1

Wj
0
(t) is the maximum amount of time that the processor

executes the task at any time interval,

∀𝑗∀𝑡 𝑤𝑗
𝑜(𝑡) ≥ 𝑤𝑗 (𝑡)

The equation of linear bound is given by,

𝑤𝑗
𝑜 𝑡 ≤ 𝑈𝑗 𝑡 + 𝐶𝑗(1 − 𝑈𝑗)

The linear upper bound function,

𝑊𝑖 𝑡 = 𝑤𝑗(𝑡) ≤ 𝑤𝑗
𝑜(

𝑖

𝑗=1

𝑡)

𝑖

𝑗=1

 ≤ 𝑈𝑗 𝑡 + 𝐶𝑗 1 − 𝑈𝑗 = 𝑊𝑖
𝑢𝑏 (𝑡)

𝑖

𝑗=1

The worst case response time for upper bound,

𝑅𝑖≤

𝐶𝑖+ 𝐶𝑗 (1−𝑈𝑗)𝑗<𝑖

1 − 𝑈𝑗𝑗<𝑖

= 𝑅𝑖
𝑢𝑏

𝑊𝑖
𝑢𝑏 𝑡 = (𝑈𝑗 𝑡 + 𝐶𝑗 1 − 𝑈𝑗)

𝑖

𝑗=1

𝐻𝑖
𝑙𝑏 𝑡 = 𝑡(1 − 𝑈𝑗) − (𝐶𝑗 1 − 𝑈𝑗)

𝑡

𝑗=1

𝑡

𝑗=1

It is invertible,

𝑋𝑖
𝑢𝑏 ℎ =

ℎ + 𝐶𝑗 (1 − 𝑈𝑗)𝑖
𝑗=1

1 − 𝑈𝑗
𝑖
𝑗=1

6.3 Predictability

Predictability in real-time systems has been defined in many

ways. For static real-time systems we can predict the overall

system performance over large time frames (even over the

life of the system) as well as predict the performance of

individual tasks. If the prediction is that 100% of all tasks

over the entire life of the system will meet their deadlines,

then the system is predictable without resorting to any

stochastic evaluation. In dynamic real-time systems we must

resort to a stochastic evaluation for part of the performance

evaluation. Predictability for these systems should mean that

we are able to satisfy the timing requirements of critical

tasks with 100% guarantee over the life of the system, be

able to assess overall system performance over various time

frames (a stochastic evaluation), and be able to assess

individual task and task group performance at different times

and as a function of the current system state. If all these

assessments meet the timing requirements, then the system is

predictable with respect to its timing requirements.

6.3.1 Types of Predictability

Functionalpredictability

Timingpredictability

6.3.2 Functional Predictability

The arefacts of computing are designed for functional

predictability are

Example

Input (ftoatx, ftoaty, time duration t)

 Compute x*y within t time units

The functional correctness is the constraint and the timing

behavior the optimization object and the formalisms of

computing abstract away the concept of physical time.

6.3.3 Timing Predictability

All run time properties are not equally important behaviour

emerges from three interacting models validation of properties

is done under assumptions that depend upon the semantics of

the property. The timing predictability is a deterministic

programs executing on non-deterministic platforms,

interacting with non deterministic platform.Threereal-

time―jobs‖onasharedpreemptiveprocessor

 Earliest Deadline First(EDF) scheduling is

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 65

VII. RESULTS AND DISCUSSION

Figure 7.1.Gantt Chart for Uniprocessor Scheduler under EDF

Figure 7.2. Timing Overhead for Uniprocessor Scheduling under EDF

Figure 7.3. CPU Cycles (Save and Load Count)

Figure 7.4. Task distribution under EDF Scheduler

Figure 7.5. Load by CPU under Simulation

Figure 7.6. Log file of the scheduler under EDF algorithm

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue X, October 2018 | ISSN 2278-2540

www.ijltemas.in Page 66

Figure 7.7. Log file of the scheduler under EDF algorithm

VIII. CONCLUSIONS AND FUTURE WORK

 The project contributions can be summarized as follows:

the test for a WCET estimation with EDF scheduling

algorithm that adopts a global approach to task allocationupon

uniprocessors. That is, the behaviorof Algorithm EDF—one

such previously defined [10], [17] static-priority global

scheduling algorithm upon uniprocessor platforms. The

simple sufficient conditions fordetermining whether any given

periodic task system will besuccesfully scheduled by

Algorithm EDF-VD upon a given uniprocessor platform. The

condition of the response time have been calculated for further

scheduling of tasks under EDF-VD algorithm. The outputs

were visualized using the Gantt charts. The deadlines and

miss were clearly visible in the output.

 The efficient condition of Earliest Deadline First along

with Virtual Deadline by estimating the shortest remaining

time algorithm, the system model can be designed and outputs

may express sufficient schedulable task over uniprocessor

platforms. The uniprocessor algorithm may be enhanced

further to create a platform on multiprocessor environments.

REFERENCES

[1]. J. N. Buxton and B. Randell, Eds., Software Engineering
Techniques: Report of a Conference Sponsored by the NATO

Science Committee, Rome, Italy, 27–31 Oct. 1969, Brussels,

Scientific Affairs Division, NATO (1970).
[2]. S. Vestal, ―Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance,‖ in Proc. Real-Time

Systems Symp., Tucson, AZ, USA, Dec. 2007, pp. 239–243.

[3]. Burns and R. Davis, ―Mixed-criticality systems: A review (7th

edition),‖ 2016; Available: http:// www-

users.cs.york.ac.uk/~burns/review.pdf 37 March/April 2018
[4]. J. Fenn and M. Raskino, Mastering the Hype Cycle: How to

Choose the Right Innovation at the Right Time, Harvard Business

School Press, 2008.
[5]. R.K.Sharmaetal. ―Balance of Power:

DynamicThermalManagement ofInternet Data Centers‖. Jan.2005

[6]. Esper, G. Nelissen, V. Nélis, and E. Tovar, ―How realistic is the
mixed-criticality real-time system model?‖ in Proc. 23rd Int. Conf.

Real Time Networks Sys. (RTNS ‘15), New York, NY, USA,

2015, pp. 139–148.
[7]. R. Ernst and M. Di Natale, ―Mixed criticality systems – A history

of misconceptions?‖ IEEE Des. Test, vol. 33, no. 5, pp. 65–74,

2016.
[8]. S. Baruah, ―Schedulability analysis of mixed-criticality systems

with multiple frequency specifications,‖ in Proc. 16th Int. Conf.

Embed. Software (EMSOFT), Oct. 2016, Pittsburgh, PA, USA.
[9]. S. Baruah and B. Chattopadhyay, ―Response-time analysis of

mixed criticality systems with pessimistic frequency

specification,‖ in Proc. IEEE Int. Conf. Embed. Real-Time
Comput. Syst. Appl. (RTCSA), Taipei, Taiwan, 2013.

[10]. Burns and R. Davis, ―Mixed criticality on controller area

network,‖ in Proc. 2013 25th Euromicro Int. Conf. Real-Time
Systems (ECRTS ‘13), Paris, France,Jul. 2013, pp. 125–134.

[11]. S. Baruah and A. Burns, ―Implementing mixedcriticality systems
in Ada,‖ in Reliable SoftwareTechnology – Ada Europe 2011, A.

Romanovsky andT. Vardanega, Eds., Edinburgh, UK: Springer,

2011,pp. 174–188.
[12]. S. Baruah, ―Schedulability analysis for a general modelof mixed

criticality recurrent real-time tasks,‖ in Proc.2016 IEEE Real-Time

Syst. Symp., Dec. 2016.
[13]. L. Sha, R. Rajkumar, J. Lehoczky, andK. Ramamritham, ―Mode

change protocols for priority-driven preemptive scheduling,‖ J.

Real-Time Syst.,vol. 1, no. 3, pp. 243–264, 1988.
[14]. S. Davari and S.K. Dhall, ―On a Real-Time Task Allocation

Problem,‖ Proc.19th Hawaii Int‘l Conf. System Science, Jan.

1985.

[15]. S. Davari and S.K. Dhall, ―An On-Line Algorithm for Real-Time

TasksAllocation,‖ Proc. Real-Time Systems Symp., pp. 194-200,

1986.
[16]. M. Dertouzos, ―Control Robotics: The Procedural Control of

PhysicalProcessors,‖ Proc. IFIP Congress, pp. 807-813, 1974.

[17]. S.K. Dhall and C.L. Liu, ―On a Real-Time Scheduling Problem,‖
OperationsResearch, vol. 26, pp. 127-140, 1978.

[18]. S. Funk, J. Goossens, and S. Baruah, ―On-Line Scheduling on

Uniform Multiprocessors,‖ Proc. IEEE Real-Time Systems Symp.,
pp. 183-192, Dec.2001.

[19]. J. Leung and J. Whitehead, ―On the Complexity of Fixed-Priority

Scheduling of Periodic, Real-Time Tasks,‖ Performance
Evaluation, vol. 2,pp. 237-250, 1982.

[20]. C. Liu and J. Layland, ―Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment,‖ J. ACM,
vol. 20, no. 1, pp. 46-61, 1973.

[21]. D.I. Oh and T.P. Baker, ―Utilization Bounds for N-Processor Rate

Monotone Scheduling with Static Processor Assignment,‖ Real-
Time Systems: The Int‘lJ. Time-Critical Computing, vol. 15, pp.

183-192, 1998.

