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Abstract- This paper is concerned with steady-state thermoelastic 

problem in which we need to determine the temperature 

distribution, unknown temperature gradient, displacement 

function and thermal stresses of a semi-infinite rectangular plate 

when the boundary conditions are known. Integral transform 

techniques are used to obtain the solution of the problem.  
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I.  INTRODUCTION 

n 1999, Adams and Bert [1] studied   thermoelastic 

vibrations of a laminated rectangular plate subjected to a  

thermal shock. Tanigawa and Komatsubara [2] discussed   

thermal stress analysis of a rectangular plate and its thermal 

stress    intensity factor for compressive stress field. Vihak; 

Yuzvyak and Yasinskij [3]:  derived the solution of the plane 

thermoelasticity problem for a rectangular     domain. Dange; 

Khobragade  and Durge [4] studied three dimensional 

inverse transient thermoelastic problem of a thin rectangular 

plate. Ghume and Khobragade [5] investigated deflection 

of a thick rectangular plate. Roy and Khobragade [6] 

discussed transient thermoelastic problem of an infinite 

rectangular slab. Lamba and Khobragade [7] studied 

thermoelastic problem of a thin rectangular plate due to 

partially distributed heat supply.  

In 2012, Sutar and Khobragade [8] discussed inverse 

thermoelastic problem of heat conduction with internal heat 

generation for the rectangular plate. Khobragade; Hiranwar; 

and Khalsa [9] derived thermal deflection of a thick clamped 

rectangular plate. Roy; Bagade and Khobragade [10] 

studied thermal stresses of a semi infinite rectangular beam. 

Jadhav and Khobragade [11] discussed inverse 

thermoelastic problem of a thin finite rectangular plate due to 

internal heat source. Singru and Khobragade [12] studied 

thermal stress analysis of a thin rectangular plate with internal 

heat source. Further  Singru and Khobragade [13] 

derived, Thermal stresses of a semi-infinite rectangular slab 

with internal heat generation.  

In this paper, an attempt has been made to solve two inverse  

steady-state problems of thermoelasticity.  

In the first problem, an attempt has been made to  determine 

the temperature distribution, unknown temperature gradient, 

displacement function and thermal stresses on the edge x = a 

of semi-infinite rectangular plate occupying the space D: 0  x 

 a, 0  y    with the boundary conditions that the heat flux 

is maintained at zero on the edges y = 0,   and temperature 

is maintained at zero on the  edge x = o of semi-infinite 

rectangular plate.  

In the second problem, an attempt has been made to  

determine the temperature distribution, unknown temperature 

gradient, displacement function and thermal stress on the edge 

x = a of semi-infinite rectangular plate occupying the space D: 

0  x  a, 0  y    with the boundary conditions that the 

heat flux is maintained at zero on the edges y = 0,   of semi-

infinite rectangular plate and on the edge x = o, the 

temperature is maintained at h(y), which is a known function 

of y .  

II. STATEMENT OF THE  PROBLEM-I 

Consider semi-infinite rectangular plate occupying the space 

D : 0  x  a,  0  y  . The displacement components ux  

and uy  in the x and y- direction represented in the integral 

form as [2] are   






































 dxT

x

U

y

U

E
ux 

2

2

2

21
                          (2.1) 






































 dyT

y

U

x

U

E
uy 

2

2

2

21
                           (2.2) 

where  and  are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the plate 

respectively and U(x,y) is the Airy’s stress function which 

satisfy the  following relation: 
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where E is the Young’s modulus of elasticity and T is the 

temperature of the  plate satisfying the differential equation 
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subject to the boundary conditions 
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The  interior condition is 
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The stress components in terms of U are given by  
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Equations (2.1) to (2.12) constitute the mathematical 

formulation of the problem under consideration. 

III. SOLUTION OF THE PROBLEM 

Applying Fourier cosine transform to the equations (2.4), 

(2.5), (2.6) and (2.9) and using the conditions (2.7), (2.8) one 

obtains  
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where CT denotes Fourier cosine transform of T and m is 

cosine transform parameter. 

Equation (3.1) is a second order differential equation whose 

solution gives  
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where A, B  are arbitrary constants. 

Using (3.3) and (3.5) in (3.6) one obtains 

A + B = 0                                                                   (3.7) 
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Substituting the values of A and B in (3.6) one obtains  
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Using the condition (3.4) to the solution (3.9) one obtains 
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Applying inverse Fourier cosine transform to the equations 

(3.9)and (3.10) one obtain the expression for temperature 

distribution  T(x,y) and unknown temperature gradient   g(y) 

as 
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where  dypyyfmf c 
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
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cos)()(          

Substituting the value of T(x,y) from (3.11) in (2.1) one 

obtains the expression for Airy’s stress function U(x,y) as 
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IV. DETERMINATION OF THERMOELASTIC 

DISPLACEMENT 

Substituting the value of U(x,y) from (3.13) in (2.1) and (2.2) 

one obtains the thermoelastic displacement  functions ux and 

uy  as              
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V. DETERMINATION OF STRESS FUNCTIONS 

Using (3.13) in (2.10) , (2.11) and (2.12) the stress functions 

are obtained as 
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Substituting the value of )(mf c  from (6.2) in the equations 

(3.11) and  (3.12) one obtains 
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VII. NUMERICAL RESULT 
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  ,  = 3.14, a = 2 m,   =1.5 m in equation (6.4) 
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VIII. STATEMENT OF THE PROBLEM-II 

Consider semi-infinite rectangular plate occupying the space 

D : 0  x  a, 0  y   . The displacement components ux  

and uy  in the x and y- direction represented in the integral 

form as [2] are  
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                    where  and  are the Poisson’s ratio and the 

linear coefficient of thermal expansion of the material of the 

plate respectively and U(x,y) is the Airy’s stress function 

which satisfy the  following relation 
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where E is the Young’s modulus of elasticity and T is the 

temperature of the plate satisfying the differential equation 
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The interior condition is 
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The stress components in terms of U are given by  

2

2

y

U
xx 


                                                       (8.10)                                                                                                             

2

2

x

U
yy 


                                                       (8.11)                                                                                                                

yx
U

xy 


2


                                                   (8.12) 

Equations (8.1) to (8.12) constitute the mathematical 

formulation of the problem under consideration. 

IX. SOLUTION OF THE PROBLEM 

Applying Fourier cosine transform to the equations (8.4), (8.5) 

(8.6) and (8.9) and using (8.7), (8.8) one obtains  
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Substituting the values of A and B in (9.6) one obtains  
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Applying inverse Fourier cosine transform to the equations 

(9.9) and (9.10) one obtain the expression for temperature 

distribution T(x,y) and the unknown temperature gradient g(y) 

as  
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Substituting the value of T(x,y) from (9.11) in (8.3) one 

obtains the expression for Airy’s stress function U(x,y) as 
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X.  DETERMINATION OF THERMOELASTIC 

DISPLACEMENT 

Substituting the value of U(x,y) from (9.13) in (8.1) and (8.2) 

one obtains the thermoelastic displacement  functions ux and 

uy  as              
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XI. DETERMINATION OF STRESS FUNCTIONS 

Using (9.13) in (8.10), (8.11) and (8.12) the stress functions 

are obtained as 
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XII. SPECIAL CASE 

Set 
ey

eyf
2

)(


 ,   
2

)(
y

eyh


                  (12.1) 

Applying Fourier cosine transform to the equation (12.1) one 

obtains 
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Substituting the values of  )(mf s  and   )(mh s  from 

(12.2) and (12.3) in the equations (9.11) and (9.12)   one 

obtains                                                                                                                                                                                                                                                           
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XIII. NUMERICAL RESULT 

Set 



2

1
  ,  = 3.14, a = 2 m,  =1.5 m in the equation 

(12.5) to obtain 
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XIV. CONCLUSION 

In both the problems, the temperature distribution, unknown 

temperature gradient, displacement function and thermal 

stresses of semi-infinite rectangular beam have been 

investigated with the aid of integral transform techniques. The 
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expressions are obtained in terms of Bessel’s function in the 

form of infinite series. The results that are obtained can be 

applied to the design of useful structures or machines in 

engineering applications. 

Any particular case of special interest can be derived by 

assigning  suitable  values to the parameters and functions in 

the  expressions.  
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