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Abstract- This paper is concerned with inverse thermoelastic 

problem in which we need to determine the temperature 

distribution, displacement function and thermal stresses of a 

semi-infinite circular beam when the boundary conditions are 

known. Integral transform techniques are used to obtain the 

solution of the problem.  
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I. INTRODUCTION 

n 1957, Nowacki [1] studied the state of stress in a thick 

circular plate due to temperature field. Roychaudhari [2] 

discussed the quasi-static stresses in a thin circular    plate due 

to transient temperature applied along the circumference of a    

circle over the upper face, Wankhede [3] studied the quasi-

static thermal stresses in a circular plate.  Gahane; Khalsa 

and Khobragade [4] studied Thermal Stresses in A Thick 

Circular Plate With Internal Heat Sources. Ghume; 

Mahakalkar  and Khobragade [5] derived Thermoelastic 

solution of a thin circular plate due to partially distributed heat 

supply. Hamna Parveen and Khobragade [6] discussed 

Thermal Stresses Of A Thick Circular Plate Due To Heat 

Generation. 

Khobragade; Khalsa; Gahane and Pathak [7] studied 

Transient Thermo elastic Problem of a Circular Plate With 

Heat Generation. Khobragade  [8] investigated Thermal 

stresses of a thin circular plate with internal heat source. 

Further Khobragade [9] discussed Thermoelastic analysis 

of a thick circular plate. Lamba and Khobragade [10] 

developed Analytical Thermal Stress Analysis in a thin   

circular plate due to diametrical compression.  Noda; 

Hetnarski and Tanigawa [11] published a book on Thermal 

Stresses, second edition. Varghese and Khobragade [12] 

derived Alternative Solution of a Transient Heat Conduction 

in a Circular Plate with Radiation. 

In this paper, an attempt has been made  to solve two direct 

problems of thermoelasticity. 

In the first steady-state problem, an attempt has been made to  

determine the temperature distribution, displacement function 

and thermal stresses of semi-infinite circular beam occupying 

the space D : 0  r  a, 0  z    , with known boundary 

conditions.  

In the second transient problem, an attempt has been made to  

determine the temperature distribution, displacement function 

and thermal stresses of semi-infinite circular beam occupying 

the space D : 0  r  a, 0  z    , with known boundary 

conditions.  

II. STATEMENT OF THE PROBLEM-I 

Consider semi-infinite circular beam occupying the  

space D : 0  r  a,  0  z   . The differential equation 

governing the displacement function  U(r,z) as  [1] is 
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with  U = 0 at r = a                                                      (2.2) 

where  and at are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the beam 

and T is the temperature of the beam satisfying the differential 

equation 

0
1

2

2

2

2
















z

T

r

T

rr

T
                            (2.3) 

subject to the boundary conditions  
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The  stress functions rr  and    are given by 
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where   is the Lame’s constant, while each of the stress 

functions rz, zz, z  are zero within the beam in the plane 

state of stress.  Equations (2.1) to (2.8) constitute the 

mathematical formulation of the problem under consideration. 

III. SOLUTION OF THE PROBLEM 

Applying  Fourier cosine transform to the equations (2.3), 

(2.4) and using (2.5), (2.6) one obtains  

0
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where  np   

)(),( nfnaT                              (3.2) 

where T  denotes  Fourier cosine transform of T and n is 

Fourier cosine transform parameter.  

Equation (3.1) is a Bessel’s equation whose solution gives 

),( nrT = A I0(pr) + B K0(pr)                                   (3.3) 

where A, B are constants and I0, K0 are modified Bessel’s 

functions of first and second kind of order zero respectively. 

As r 0, K0  , but by physical consideration, 

),( nrT  remains finite. Therefore B must be zero. 

Using (3.2) in (3.3) one obtains 
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Substituting the values of A and B in (3.3) one obtains 
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Applying Inverse Fourier cosine transform to the equation 

(3.4) one obtains the expression for the temperature 

distribution T(r,z) as 
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where 
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0

)cos()()( dzpzzfnf         

Equations (3.5) is the desired solution of the given problem. 

IV. DETERMINATION OF THERMOELASTIC 

DISPLACEMENT 

Substituting the value of T(r,z) from (3.5) in (2.1) one obtains 

the  thermoelastic displacement function U(r, z) as 
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V. DETERMINATION OF STRESS FUNCTIONS 

Using (4.1) in (2.7) and (2.8) the stress functions are obtained 

as 
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VI. SPECIAL CASE 

Set aezf z2
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Applying Fourier cosine transform to the  equation (6.1) one 

obtains 
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Substituting the value of )(nf  from (6.2) in the equations 

(3.5) and (3.8)  one obtains  
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VII. NUMERICAL RESULT 
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a
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VIII. STATEMENT OF THE PROBLEM-II 

Consider semi-infinite circular beam occupying the space D : 

0  r  a,  0  z   . The differential equation governing the 

displacement function U(r,z,t) as [1] is 
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with  U = 0 at r = a                                                     (8.2) 

where  and at are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the beam 

and T is the temperature of the beam satisfying the differential 

equation 
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subject to the initial condition  
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The boundary conditions  are 
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where k is the thermal diffusivity of the material of the 

circular beam.  

The stress functions rr  and   are given by 
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where  is the Lame’s constant, while each of the stress 

functions rz , zz  and z  are zero within the beam in the 

plane state of stress. 

Equations (8.1) to (8.9) constitute the mathematical 

formulation of the problem under consideration. 

IX. SOLUTION OF THE PROBLEM 

Applying  Fourier cosine transform to the equations (8.3), 

(8.4), (8.5) and using (8.6), (8.7) one obtains  
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where T  denotes  Fourier cosine transform of T and n is 

Fourier cosine transform parameter. 

Applying Laplace transform to the equations (9.1), (9.3)  and 

using (9.2) one obtains  
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T denotes Laplace transform of T  and s is Laplace 

transform parameter. 

Equation (9.4) is a Bessel’s equation whose solution gives  
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where A, B are constants and I0, K0 are modified Bessel’s 

functions of first and second kind of order zero respectively. 
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Applying inverse-Laplace transform to the equation (9.8) one 

obtains  
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To evaluate the contour integral (9.11) one observes that the 

integrand (9.11) is a single valued function of s, so that one 

may make use of the contour shown in the figure. 

The poles of the integrand are at the points  
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where ...,...,, 21 m   are the roots of the transcendental 

equation 
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By applying the convolution theorem, the equation (9.9)  

gives 
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Applying inverse  Fourier cosine  transform  to the equations 

(9.14)  one obtains the expressions for the temperature  

distribution T(r,z,t) as  
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where  m, n are positive integers, m are  the positive roots of 

the equation  

0)(0 aJ m . 

X. DETERMINATION OF THERMOELASTIC 

DISPLACEMENT 

Substituting the value of T(r,z,t) from (9.15) in (8.1), one 

obtains the thermoelastic displacement function U(r, z,t) as 
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XI. DETERMINATION OF STRESS FUNCTIONS 

Using (10.1) in (8.8) and (8.9) the stress functions are 

obtained as 
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XII. SPECIAL CASE 

Set aeetzf zt 2
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Applying Fourier cosine transform to the equation (12.1) one 

obtains 
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Substituting the value of ),( tnf from (12.2) in the equations 

(9.7) and (9.8) one obtains 
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XIII. NUMERICAL RESULT 

Set  



k

 ,  a=1.5 m,  t =1 sec, k = 0.86 and m are the 

roots  of the transcendental equation 0)(0 aJ m  as [13] in 

(12.3) to obtain 
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XIV. CONCLUSION 

In both the problems, the temperature distribution,  

displacement function and thermal stresses have been derived 

with the help of Fourier cosine transform and Laplace 

transform techniques. The results that are obtained can be 

applied to the design of useful structures or machines in 

engineering applications. Any particular case of special 

interest can be derived by assigning  suitable values to the 

parameters and functions in the expressions.  
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