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Abstract- This paper is concerned with inverse thermoelastic 

problem in which we need to determine the temperature 

distribution, unknown temperature gradient, displacement 

function and thermal stresses of a semi-infinite annular beam 

when the boundary conditions are known. Integral transform 

techniques are used to obtain the solution of the problem.  
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I.  INTRODUCTION 

In 1968, Ozisik [1] has published a book on Boundary Value 

Problem of Heat Conduction. Varghese and Khobragade [2]  

studied inverse transient thermoelastic problem of a thin 

annular disc. Varghese and Khobragade [3] discussed 

transient   thermoelastic analysis in thin annular disc with 

radiation type   boundaries conditions. Hiranwar and 

Khobragade [4] studied thermoelastic problem of a thin 

annular disc due to radiation. Lamba and Khobragade [5] 

derived thermal stresses of a thin annular disc due to partially 

distributed heat supply.  Walde and Khobragade [6] 

discussed inverse thermoelastic problem of a thin annular disc 

due to heat generation. Further Walde and Khobragade [7] 

derived thermal deflection of a clamped annular disc due to 

heat generation.  

Sutar and Khobragade [8] derived solution of an inverse 

thermoelastic problem of heat conduction with internal heat 

generation in an annular disc. Khobragade [9] has developed 

thermoelastic analysis of a thick annular disc with radiation 

conditions. Further Khobragade [10] derived thermal 

deflection of an annular disc due to heat generation. 

Navlekar, Warbhe and Khobragade [11] studied heat 

transfer and thermal stresses of a thick annular disc due to 

heat generation. Ovais Ahmed, Khobragade and Khalsa 

[12] investigated optimum  thermal stresses of a thick annular 

disc due to partially distributed heat supply.  Singru and 

Khobragade  [13] developed integral transform methods for 

inverse problem of heat conduction with known boundary of 

semi-infinite hollow cylinder and its stresses . Pakade and 

Khobragade  [14] studied transient thermoelastic problem of 

Semi-Infinite circular beam with internal heat sources.  

In this paper, an attempt has been made to solve two inverse 

problems of thermoelasticity. 

In the first steady-state problem, an attempt has been made to 

determine the temperature distribution, unknown temperature 

gradient, displacement function and thermal stresses on the 

outer curved surface of annular beam. The  temperature is 

maintained at zero on the plane surfaces of a beam and  at 

inner and outer curved surfaces, it is maintained at u(z) and 

f(z) respectively. 

In the second transient problem, an attempt has been made to 

determine the temperature distribution,  unknown temperature 

gradient, displacement function and thermal stress functions 

on the outer curved surface of annular beam. The  temperature 

is maintained at zero on the plane surfaces of a beam and  at 

inner and outer curved surfaces, it is maintained at u(z,t) and 

f(z,t) respectively. 

II. STATEMENT OF THE PROBLEM-I 

Consider semi-infinite annular beam occupying the space D : 

a  r  b,  0  z   . The differential equation governing the 

displacement function U(r,z) as [1] is 
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with  U = 0 at r = a and r = b                                     (2.2) 

where  and at are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the beam 

respectively and T(r,z) is the temperature of the beam 

satisfying the differential equation 
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subject to the boundary conditions  
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The interior condition 

)(),( zfzT    ,   0 <  < a   (known)               (2.8) 

The stress functions rr  and   are given by  
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where  is the Lame’s constant, while each of the stress 

function rz, zz and z  are zero within the beam in the plane 

state of stress. Equations (2.1) to (2.10) constitute the 

mathematical formulation of the problem under consideration. 

III. SOLUTION OF THE PROBLEM 

 Applying Fourier sine transform to the equations  (2.3), (2.4), 

(2.5) and (2.8) and using (2.6), (2.7) one obtains  
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where  
222 mp                                                (3.2) 
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)(),( msfmsT                             (3.5) 

where sT  denotes Fourier sine transform of T and m is sine 

transform parameter. 

Equation (3.1) is a Bessel’s equation whose solution gives 

)()(),( 00 prBKprAImrT s              (3.6) 

where A, B  are constants and I0(pr), K0(pr) are modified 

Bessel’s functions of first and second kind of order zero 

respectively. 

Applying the boundary conditions (3.3) and (3.5) to the 

equation (3.6) one obtains 
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Substituting the values of A and B in (3.6) one obtains  
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Using the condition (3.4) to the solution (3.9) one obtains 
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Applying inverse Fourier sine transform to the equations (3.9) 

and (3.10) one obtain the expression for the  temperature 

distribution T(r,z) and the unknown temperature gradient g(z) 

as  
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where dzpzzfmf s 
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IV. DETERMINATION OF THERMOELASTIC  

DISPLACEMENT FUNCTION 

Substituting the value of T(r,z) from (3.11) in (2.1) one 

obtains the thermoelastic displacement  function U(r,z) as  
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V.  DETERMINATION OF STRESS FUNCTIONS  

Using the equation (4.1) in (2.9) and (2.10) the stress 

functions are  obtained as 
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VI. SPECIAL CASE 
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Applying Fourier sine transform to the equation (6.1)  one 

obtains 
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Substituting the values of )(mf s  and  )(mu s  from (6.2) 

and (6.3) in the equations (3.11), (3.12) one obtains 
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VII. NUMERICAL RESULTS 

Set  
2

1
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the equation (6.4) to obtain 
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VIII. STATEMENT OF THE PROBLEM-II 

Consider semi-infinite annular beam occupying the space D : 

a  r  b,  0  z   . The differential equation governing the 

displacement function U(r,z,t) as [1] is 
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with  U = 0 at r = a and r = b                                     (8.2) 

where  and at are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the beam 

respectively and T(r,z,t) is the temperature of the beam 

satisfying the differential equation 
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subject to the initial condition 

0)0,,( zrT                                                      (8.4) 

The boundary conditions are 
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The interior condition is 

),(),,( tzftzT   , a <  < b  (known)         (8.9)  

The stress functions rr  and   are given by  
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where  is the Lame’s constant, while each of the stress 

function rz, zz and  z  are zero within the beam in the 

plane state of stress. 

Equations (8.1) to (8.11) constitute the mathematical 

formulation of the problem under consideration. 

IX. SOLUTION OF THE PROBLEM 

Applying Fourier sine transform to the equations (8.3), (8.4), 

(8.5), (8.6) and (8.9) and using (8.7), (8.8) one  obtains  
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where sT denotes Fourier sine transform of T and m is sine 

transform parameter. 

Applying Laplace transform to the equations (9.1), (9.3), 

(9.4), (9.5)  and using the conditions  (9.2) one obtains   
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),(),,( tmsftmsT                                    (9.10)  

where 
sT  denotes Laplace transform of sT  and s is Laplace 

transform parameter. 

Equation (9.6) is a Bessel’s  equation whose solution gives  

)()(),,( 00 qrBKqrAIsmrT s 


      (9.11) 

where A, B  are constants and I0 , K0 are modified Bessel’s 

functions of first and second kind of order zero respectively. 

Using (9.8) and (9.10) in (9.11) one obtains  
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Solving (7.9.12) and (7.9.13) one obtains 
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Substituting the values of A and B in (9.11)  and using 

condition (8.9)  one obtains  
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Applying inverse Laplace transform) to the equation (9.14)  

one obtains 
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To calculate the inverse Laplace transform of (9.17): 

Applying inverse Laplace transform to the equation (9.17) one 

obtains  
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where c is greater than the real part of the singularities of the 

integer and the integrand is a single valued function of s. The 

poles of the integrand are at the points 

               22

nn pkss   

where n  are the positive roots of the transcendental equation 

0)()()()( 0000  aJrYaYrJ nnnn                                                                   

                                                                                  (9.20) 

The zeros of )()()()( 0000 qaIqKqaKqI     all are 

real and simple. 

The poles of the integrand (9.18) are at  

                  22

npks         n = 1,2,3,… 

Using the contour of figure given below, 

The integrand (9.19) is equal to 2i times the sum of the 

residues at the  poles of the integrand.  

To find the residue at the point, one requires the result: 
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Applying convolution theorem to the equation (9.16) one  
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Applying inverse Fourier sine transform to the  equation 

(9.24) one obtains  
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where m, n are positive integers. 

Applying inverse Laplace transform and then inverse Fourier 

sine transform to the equation (9.15) one obtains the 

expression for unknown temperature gradient g(z,t) as 
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where m, n are positive integers and n  are the positive roots 

of the transcendental equation  
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X.  DETERMINATION OF THERMOELASTIC 

DISPLACEMENT 

Substituting the value of T(r,z,t) from (9.25) in (8.1) one 

obtains the thermoelastic displacement  function U(r,z,t) as 
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XI. DETERMINATION OF STRESS FUNCTIONS 

Using (10.1) in (8.10) and (8.11) the stress functions are 

obtained as 
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XII. SPECIAL CASE 
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Applying  Fourier sine transform to the equation (12.1) one 

obtains  
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where m is positive integer. 

Substituting the values of ),( tmf s  and ),( tmu s  from 

(12.2) and (12.3) in the equations (9.25), (9.26) one obtains 
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XIII. NUMERICAL RESULT 

Set  
2


  , a =0.5 m, b = 2 m,  =1.5 m  and t = 1 sec  and 

n  are the roots of the transcendental equation 
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as [3] in (12.4) one obtains 
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XIV. CONCLUSION 

In both the problems, the temperature distribution, unknown 

temperature gradient, displacement function and thermal 

stresses of annular beam have been derived. The Fourier sine 

transform and Laplace transform techniques are used to obtain 

the numerical results. The results that are obtained can be 

applied to the design of useful structures or machines in 

engineering applications. Any particular case of special 

interest can be derived by assigning  suitable  values to the  

parameters and functions in the  expressions.  
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