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Abstract- This paper is concerned with steady-state thermoelastic
problem in which we need to determine the temperature
distribution, displacement function and thermal stresses of a
semi-infinite rectangular plate when the boundary conditions are
known. Integral transform techniques are used to obtain the
solution of the problem.
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I. INTRODUCTION

In 1999, Adams and Bert [1] studied  thermoelastic
vibrations of a laminated rectangular plate subjected to a
thermal shock. Tanigawa and Komatsubara [2] discussed
thermal stress analysis of a rectangular plate and its thermal
stress intensity factor for compressive stress field. Vihak;
Yuzvyak and Yasinskij [3]: derived the solution of the plane
thermoelasticity problem for a rectangular  domain. Dange;
Khobragade and Durge [4] studied three dimensional
inverse transient thermoelastic problem of a thin rectangular
plate.  Ghume and Khobragade [5] investigated deflection
of a thick rectangular plate. Roy and Khobragade [6]
discussed transient thermoelastic problem of an infinite
rectangular slab. Lamba and Khobragade [7] studied
thermoelastic problem of a thin rectangular plate due to
partially distributed heat supply.

In 2012, Sutar and Khobragade [8] discussed inverse
thermoelastic problem of heat conduction with internal heat
generation for the rectangular plate. Khobragade; Hiranwar;
and Khalsa [9] derived thermal deflection of a thick clamped
rectangular plate. Roy; Bagade and Khobragade [10]
studied thermal stresses of a semi infinite rectangular beam.
Jadhav and Khobragade [11] discussed inverse
thermoelastic problem of a thin finite rectangular plate due to
internal heat source. Singru and Khobragade [12] studied
thermal stress analysis of a thin rectangular plate with internal
heat source. Further Singru and Khobragade [13]
derived, Thermal stresses of a semi-infinite rectangular slab
with internal heat generation.

In this paper, an attempt has been made to solve two direct
steady-state problems of thermoelasticity.

In the first problem, an attempt has been made to determine
the temperature distribution, displacement function and
thermal stresses functions of semi-infinite rectangular plate

occupying the space D: 0 < x < a, 0 <y < oo with known
boundary conditions.

In the second problem, an attempt has been made to
determine the temperature distribution, displacement function
and thermal stresses of semi-infinite rectangular plate
occupying the space D: 0 < x < a, 0 £y < oo with known
boundary conditions.

Il. STATEMENT OF THE PROBLEM-I

Consider semi-infinite rectangular plate occupying the space
D:0<x<a, 0<y<oo. The displacement components uy
and u, in the x and y- direction represented in the integral
formas [2] are

- 2 i
ux=j R I 2.1)
Eloy? = ox?
10U U |
Uy ZJ E{y—l/yj-i-a-r dy (22)

where v and o are the Poisson’s ratio and the linear
coefficient of thermal expansion of the material of the plate
respectively and U(x,y) is the Airy’s stress function which
satisfy the following relation:

2 2Y 0?0
—2+—2 U=-aE —2+—2
ox° oy ox° oy

where E is the Young’s modulus of elasticity and T is the
temperature of the plate satisfying the differential equation

(2.3)
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T LT

ox2 ayz (2.4)
subject to the boundary conditions

T(0,y)=0 (2.5)
T(ay)=f(y) (2.6)
{—dT(X' y)} -0 @.7)
dy y=0
Page 54



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VII, Issue Il, February 2018 | ISSN 2278-2540

FTuyq 0 28)

dy Y=o

The stress components in terms of U are given by
_ U

GXX - 6y2 (2.9)

U

Oy =52 (2.10)
__ U

Ox =~ axdy (2.12)

Equations (2.1) to (2.11) constitute the mathematical
formulation of the problem under consideration.

I11. SOLUTION OF THE PROBLEM

Applying Fourier cosine transform to the equations (2.4),
(2.5), (2.6) and using the conditions (2.7), (2.8) one obtains

d2T¢

7 p’Tc =0 3.1)
where p2 = m?7z? (3.2)
Tc(0,m)=0 (3.3)
Tc(a,m) = f(m) (34)

where T c denotes Fourier cosine transform of T
and m is cosine transform parameter.

Equation (3.1) is a second order differential equation whose
solution gives

Te (x,m) = Ae™ +Be ™ (3.5)
where A, B are arbitrary constants.

Using (3.3) and (3.4) in (3.5) one obtains

A+B=0 (3.6)
AeP +Be P =f _(m) (3.7)
Solving (3.6) and (3.7) one obtains

,(m) _ f(m)
_epa_e_pa ’ o epa_e_pa

Substituting the values of A and B in (3.5) one obtains

- sinh( px)

Te(x,m) = f (m) Snh(pa) 3.8)

Applying inverse Fourier cosine transform to the equations
(3.8) one obtains the expression for temperature distribution
T(X,y) as

sinh( px
__Lgl} 39)

T“”:iz?”m“”{mmW)
m=1

where f . (m) =I f (y)cos py dy
0

Substituting the value of T(x,y) from (3.9) in (2.1) one obtains
the expression for Airy’s stress function U(x,y) as

{—s?nh( px)} (3.10)

a 0
U(xy)=—— D c(m)cospy Sh(pa)

ﬂpm:

IV. DETERMINATION OF THERMOELASTIC
DISPLACEMENT

Substituting the value of U(x,y) from (3.10) in (2.1) and (2.2)
one obtains the thermoelastic displacement functions u, and

Uy as
hmm} @)

u, = a(ZV)}Zf C(m)cospy[ o pa)

U, = :pv)}ZfC(m)smh(py){ hép ﬂ (4.2)

V. DETERMINATION OF STRESS FUNCTIONS

Using (3.10) in (2.9), (2.10) and (2.11) the stress functions are
obtained as

oE inh( px)
T ( )ch(m) pyLmh(paJ (5.1)
_ (BT sinh( px)
on £ |57 meoom S| e
(E N . cosh(px)
aw—(ﬂjg;fxmnmpﬁami&g} 63
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VI. SPECIAL CASE

2

set T(Y) —e Y a (6.1)

Applying finite Fourier cosine transform to the equation (6.1)
one obtains

T o(m =@+ y)e)acos(py)y
0

avre P /4

- 2 (6.2)

Substituting the value of f . (m) from (6.2) in the equation
(3.9) one obtains

0 QI sinh(px)
Tx,y)=|—=1|) e Cos py| ————~
(x.y) [2,/7;1“2:1 pyLlnh(pa)

(6.3)

VII. NUMERICAL RESULT

Set 3 =_2 , ©=3.14,a=1.5min equation (6.3) to obtain
N

T(XY) N o-p2r4 sinh(3.14m)
B _;e Cos(l"r’?my)[sinh(l.sesm)}

(7.1)

VIII. STATEMENT OF THE PROBLEM-II

Consider semi-infinite rectangular plate occupying the space
D:0<x<a 0<y< 0O, The displacement components u,
and uy, in the x and y- direction represented in the integral
form as [2] are

B 2 2

uX:j A e 8.1)
Eloy? — ox?
1(oU o

Uy —J. E[y-VyJ-FO{T}dy (82)

where v and o are the Poisson’s ratio and the
linear coefficient of thermal expansion of the material of the
plate respectively and U(x,y) is the Airy’s stress function
which satisfy the following relation
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(8.3
where E is the Young’s modulus of elasticity and T is the
temperature of the plate satisfying the differential equation
T 0%
OX oy

subject to the boundary conditions

T(0,y)=h(y) (8.5)
T(ay)=f(y) (8.6)
{dT(x, y)} _0 8.7
dy y=0
{dT(x, y)} _0 8.8)
dy Yoo
The stress components in terms of U are given by
_ o
GXX - 8y2 (8.9)
_ o
W T %2 (8.10)
__ U
Oxy = OX0y (8.11)

Equations (8.1) to (8.11) -constitute the mathematical
formulation of the problem under consideration.

IX. SOLUTION OF THE PROBLEM

Applying Fourier cosine transform to the equations (8.4), (8.5)
(8.6) and using (8.7), (8.8) one obtains

ddZXTZC ~p*Te=0 ®1
where p? =m?z? 9.2)
Tc(0,m)=h(m) (9.3)
Tc(a,m) = f (m) (9.4)

where T ¢ denotes Fourier cosine transform of T and m

is cosine transform parameter.
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The equation (9.1) is a second order differential equation
whose solution gives

Te (x,m) = AeP* + Be ™ (9.5)
where A, B are arbitrary constants.

Using (9.3) and (9.4) in (9.5) one obtains
A+B=h(m) (9.6)
AePé +Be P = f (m) (9.7)

Solving (9.6) and (9.7) one obtains

o fe(m  he(me ™
o fo(m) | Ro(me®

Substituting the values of A and B in (9.5) one obtains
Toom)=T, (m){s?nh( pX) } g (m){sinh-( p(x— a))}
sinh( pa) sinh( pa)
(9.8)

Applying inverse Fourier cosine transform to the equations
(9.8) one obtain the expression for temperature distribution
T(x,y) as

T(y) == > F c(m)cos py[s.‘”hﬂ}
m=1

sinh( pa)
_1Ish sinh(p(x —a))
ﬁmZ:‘IhC(m)COS py[ sinh( pa) }

(9.9)
o b
where fc(m)zjf(y)sin pydy
0

he(m) = [ h(y)sin pydy

Substituting the value of T(x,y) from (9.9) in (8.3) one obtains
the expression for Airy’s stress function U(x,y) as

Ux,y) =—;7E22?c(m>cos py{M}

~ sinh( pa)
, 20E Zh (m)cos py{sinh_(p(x—a))}
7zp sinh( pa)
(9.10)

X. DETERMINATION OF THERMOELASTIC
DISPLACEMENT

Substituting the value of U(x,y) from (9.10) in (8.1) and (8.2)
one obtains the thermoelastic displacement functions u, and
Uy as

[2a@+v) T sin py [ cosh(pa)-1
ux—[ T }ng(m)Linh(pa)}[ m }

2a(2+v) o= sinpy [ 1-cosh(pa)
{ . };hC(m)Linh(pa)}{ : } (10.1)

{2a(2+v)}i sinh(px)__cos(pa)—l}
sinh(pa) | m

m=1

[2a@+v) A+ sinh(p(x—a)) [ cos(pa)—1
{ z };hC(m){ sinh(pa) |L m }

(10.2)

XI1. DETERMINATION OF STRESS FUNCTIONS

Using (9.10) in (8.9) , (8.10) and (8.11) the stress functions
are obtained as

(eE\N T sinh( px)
T —[ = ]mzl f ((m)cos py{—. }

sinh( pa)
_(E\S™h sinh(p(x - a))
(”j;hc(m)cospy{ sinh( pa) }
(11.1)

T (m)co {sinh(px)}
sinh( pa)
E Vo sinh(p(x—a)) (112)
+ (7j2h c(m)cos py{—sinh( 0a) }
(BT cosh(px)
Oy —( - jZf s(m)cos py{—sinh( pa)}
_(“EVSqy cosh(p(x—a))
( z ]Zh s(m)cos py{ sinh( pa) }

(11.3)
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XIl. SPECIAL CASE

2 2
set f(y)=e Y €@, h(y)=e Y

Applying Fourier cosine transform to the equation (12.1) one
obtains

(12.1)

2

f (m)= Ie_ Y e cos pydy
0

\/;e—pzMea

5 (12.2)
he(m) = (e~ Y cospydy
0
2
[ meP
= 5 (12.3)
Substituting the values of T (M) and h <(m) from
(12.2) and (12.3) in the equations (9.9) one obtains
sinh( px)
T(Xy) =
(X, y) = pyLlnh(pa)}
1 < nh(p(e-a)]
_p? sinh(p(x—a
——— Y e P tcospy| T2
2\/;; py{ sinh( pa) }

XIII. NUMERICAL RESULT

Set h=—— = 3.14, a =1.5 m in the equation (12.4) to
p= , \/— T q (12.4)
obtain
sinh(3.14m) (%)
°° sinh(1.36m
& Z os(@.57my) _( )
s = [ sinh(0.79m)
sinh(1.36m)
(13.1)

XIV. CONCLUSION

In both the problems, the temperature distribution,
displacement function and thermal stresses of semi-infinite
rectangular beam have been investigated with the aid of
integral transform techniques. The expressions are obtained in
terms of Bessel’s function in the form of infinite series. The
results that are obtained can be applied to the design of useful
structures or machines in engineering applications.

Any particular case of special interest can be derived by
assigning suitable values to the parameters and functions in
the expressions.
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