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Abstract: The Variational Homotopy Perturbation Method 

(VHPM) deforms a difficult problem into a simple problem 

which can be easily solved. In this work VHPM is applied to 

solve homogeneous and non homogeneous Diffusion equations. 

The obtained results are found to be in good agreement with the 

exact solutions known.     
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I. INTRODUCTION 

n the recent years, the application of Homotopy 

Perturbation Method (HPM) in nonlinear problems has 

been developed by many Mathematicians and engineers to 

solve various differential equations problems. The HPM 

deforms the difficult problem under study into a simple 

problem which is easy to solve. The HPM and the VIM 

(Variational Iteration Method) was introduced by Ji-Huan He 

[1-6] of Shanghai University and was further improved by 

Ganji[7-8], Yang[9-10], Zhang[11] and so on. The VHPM is 

based on the HPM and the VIM. The method employs a 

homotopy transform to generate a convergent series solution 

of differential equations.  

II. BASIC IDEA OF VARIATIONAL HOMOTOPY 

PERTURBATION METHOD 

  Consider the nonlinear Differential equation:  

              , ,L u x t N u x t g t                                 (1)   

 Where  L   = Linear operator 

              N = Nonlinear operator 

             g t = Analytical function(Known) 

According to Variational Iteration method(VIM), we write a 

correctional functional as 
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                           (2)                         

Where  = general Lagrangian multiplier which can be 

identified optimally, 

            nu = n
th

 approximate solution,
 

            nu = restricted variation, i.e., nu   =0. 

By Homotopy perturbation method(HPM), we can construct 

an equation is as follows 
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Usually an approximation to the solution will be obtained by 

identical powers of p and taking the limit as 1p  , we get 
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                                                 (4) 

III. HOMOGENEOUS DIFFUSION EQUATION 

Consider Linear homogeneous Diffusion Equation 

     ,0 1, 0t xxu u u x t                                             (5) 

Boundary conditions are given by 

        0, 0 1, , 0u t u t t                                            (6) 

Initial condition is given by 

 ,0 sin ,0 1u x x x                                                (7) 

This is a Heat Equation which is solved by VHPM. 

By VHPM, consider    

  tL u u and   xxN u u u                                                                       

(8) 
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Where L is a linear operator and N is a nonlinear operator. 

In order to construct a correction functional for this system, 

we can write the following expression 

              1
0
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(9)           

Where, 

 nu = restricted variation, i.e., nu   =0. 
 

To find the optimal value of  ,we make the correction 

functional(9) stationary in the following  form  
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  Hence, we have the following stationary conditions 
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Substituting this value in equation (2), we get 
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(10)
 
 

Then equation (9) will enable to determine the components  

 ,nu x t  recursively for 0n  . 

Now, by exerting the VHPM, it is possible to obtain the 

equation as follows, 

   2 2 2

0 1 2 0 1 2 0 1 2

0 0

..... sin ..... .....

t t
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   

    

Comparing powers of p  from both sides, we get  
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and so on, we get an equation (4) becomes 

       
2 3
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This is the exact solution of (5). 

IV. NON HOMOGENEOUS DIFFUSION EQUATION 

Consider  non homogeneous Diffusion Equation 

3 ,0 , 0t xxu u x x t                                             (17)                                                                                                  

Boundary conditions are given by 

   0, 0, ,u t u t t                                                 (18)                                                                                                   

Initial condition is given by 

 ,0 sin ,0u x x x                                                 (19)                                                                                                 

This is a Heat equation which is solved by VHPM 

By VHPM, consider     

  tL u u and   3 xxN u u x  
                                                           

(20) 
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Now, by exerting the VHPM, it is possible to obtain an 

equation as follows 

 2 3 2 3

0 1 2 3 0 1 2 3

0 0

........ sin 3 ........
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    (21) 

     2 3 2

0 1 2 3 0 1 2

0 0

........ sin 3 ........

t t

xx xx xx
u pu p u p u x p u p u p u ds p xds            

  (22)  

Comparing the powers of p from both sides we get the 

following results           
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and so on, we get an equation (4) becomes 

 

  2 3, sin 3 sin 9 sin 27 sin ................u x t x t x xt t x t x     
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This is the exact solution of (17).                                                                                                               

V. CONCLUSION 

In this paper, VHPM has been successfully applied for 

homogeneous and non homogeneous diffusion equations and 

compared with exact solutions. The present method is easy 

and reliable to use.  Thus, VHPM is one of the successful 

method to solve homogeneous, non homogeneous problems 

and gives quickly convergent. 
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