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Abstract- This paper is concerned with steady-state thermoelastic
problem in which we need to determine the temperature
distribution, displacement function and thermal stresses of semi-
infinite rectangular plate when the boundary conditions are
known. Integral transform techniques are used to obtain the
solution of the problem.
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I. INTRODUCTION

In 1999, Adams and Bert [1] studied thermoelastic
vibrations of a laminated rectangular plate subjected to a
thermal shock. Tanigawa and Komatsubara [2] discussed
thermal stress analysis of a rectangular plate and its thermal
stress intensity factor for compressive stress field. Vihak;
Yuzvyak and Yasinskij [3]: derived the solution of the plane
thermoelasticity problem for a rectangular ~ domain. Dange;
Khobragade and Durge [4] studied three dimensional
inverse transient thermoelastic problem of a thin rectangular
plate.  Ghume and Khobragade [5] investigated deflection
of a thick rectangular plate. Roy and Khobragade [6]
discussed transient thermoelastic problem of an infinite
rectangular slab. Lamba and Khobragade [7] studied
thermoelastic problem of a thin rectangular plate due to
partially distributed heat supply.

In 2012, Sutar and Khobragade [8] discussed inverse
thermoelastic problem of heat conduction with internal heat
generation for the rectangular plate. Khobragade; Hiranwar;
and Khalsa [9] derived thermal deflection of a thick clamped
rectangular plate. Roy; Bagade and Khobragade [10]
studied thermal stresses of a semi infinite rectangular beam.
Jadhav and Khobragade [11] discussed inverse
thermoelastic problem of a thin finite rectangular plate due to
internal heat source. Singru and Khobragade [12] studied
thermal stress analysis of a thin rectangular plate with internal
heat source. Further Singru and Khobragade [13]
derived, Thermal stresses of a semi-infinite rectangular slab
with internal heat generation. Barai; Warbhe and
Khobragade [14] studied inverse steady-state thermoelastic
problems of semi-infinite rectangular plate and Barai;
Warbhe and Khobragade [15] discussed inverse transient
thermoelastic problem of semi-infinite rectangular plate.

In this paper, an attempt has been made to discuss two steady-
state problems of thermoelasticity. In both the problems, an
attempt has been made to determine the temperature
distribution, displacement function and thermal stresses
functions of semi-infinite rectangular plate occupying the
space D: 0 < x < a, 0 £y < oo with known boundary
conditions.

Il. STATEMENT OF THE PROBLEM-I

Consider semi-infinite rectangular plate occupying the space
D:0<x<a, 0<y< 0. The displacement components uy
and u, in the x and y- direction represented in the integral
form as [2] are

2 2
ux=j 109 LZJ —va—LzJ +aT |dx (2.1)
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where v and o are the Poisson’s ratio and the linear
coefficient of thermal expansion of the material of the plate
respectively and U(x,y) is the Airy’s stress function which
satisfy the following relation:

o2 oY or  @*
(W + W} U= —aE(a—z + WJT (23)
X

where E is the Young’s modulus of elasticity and T is the
temperature of the plate satisfying the differential equation

o°T 0T
~Z Tz T
oX~ oy
subject to the boundary conditions

T(0,y)=0 2.5)

]+aT}dy (2.2)

0 (2.4)
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T(a,y)=f(y)

(2.6)

T(x,00=0 .7

T(x,0)=0 (2.8)

The stress components in terms of U are given by
_ U

O =52 29)

o =

W ol (2.10)

__du

Oxy = ™ oxy (2.11)

Equations (2.1) to (2.11) constitute the mathematical
formulation of the problem under consideration.

I11. SOLUTION OF THE PROBLEM

Applying Fourier sine transform to the equations (2.4), (2.5),
(2.6) and using the conditions (2.7), (2.8) one obtains

de =

o p =0 (3.1)
where p2 = m? 72 (3.2)
Ts(0,m)=0 (3.3)
Ts(a,m) = fg(m) (3.4)

where 'Fs denotes Fourier sine transform of T and m is sine
transform parameter.

Equation (3.1) is a second order differential equation whose
solution gives

Ts (X,m)=
where A, B are arbitrary constants.

Using (3.3) and (3.4) in (3.5) one obtains
A+B=0 (3.6)
Ae™ +Be ™ =f (m) 3.7)

Solving (2.2.7) and (2.2.8) one obtains

Ae™ +Be ™ (3.5)

Ao tsm o (M)
epa_e_pa ! epa_efpa
Substituting the values of A and B in (3.5) one obtains

T.(x,m) =T (m)nn(Px)

sinh(pa) (38)

Applying inverse Fourier sine transform to the equations (3.8)
one obtains the expression for temperature distribution T(x,y)

T(x,y)== Zf (m)sin pyLl hépaﬂ (3.9)

where T, (m) = [ £ (y)sin pydy
0

Substituting the value of T(x,y) from (3.9) in (3.1) one obtains
the expression for Airy’s stress function U(x,y) as

sinh(px)
Zf (m)sin py{S nh(pa)}
(3.10)

Ux,y)=-

IV. THERMOELASTIC DISPLACEMENT FUNCTIONS

Substituting the value of U(x,y) from (3.10) in (2.1) and (2.2)
one obtains the expression for thermoelastic displacement
functions uy and uy as

| 2a(2+V) sin py
ux—{ z }Z s (m )Llnh(pa)}

m=1

(4.1)

><{cosh(pa)—l}

m

o -[HE T ol ]
m=1

X[cos(pa)—l_

- 4.2)

V. STRESS FUNCTIONS

Using (3.10) in (2.9), (2.10) and (2.11), the stress functions
are obtained as

www.ijltemas.in

Page 13



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue lll, March 2018 | ISSN 2278-2540

_[E T : (pX)
e _( ™ jm:lf s(m)sin pyLl h(pa)} G
_ (BT . ['sinh(px) |
o= ( 4 jZ;,f s(m)sin pyLinh(pa)_ 2)

(BT cosh(px) |
oy _( jmf;f .(m)cos py{—sinh (va) (5.3)

VI. SPECIAL CASE

y
1+y

set T(Y)= 5 |a 6.1)

Applying Fourier sine transform to the equation (6.1) one
obtains

o(m= j 5 [asin(py)dy

1+y

= (%j[ep] (6.2)

Substituting the value of f ; (m) from (6.2) in the equations
(3.9), one obtains

T(X,y)= (?ji [e’p ]sin py{—s_inh( PX) }
m=1

sinh( pa)

(6.3)
VII. NUMERICAL RESULTS

Set = [?] , t=3.14,a=2m, in equation (6.3) to obtain

T(x y) Po sinh( px)
p Ze py[slnh(z p)} (7.1

VIIl. STATEMENT OF THE PROBLEM-II

Consider semi-infinite rectangular plate occupying the space
D:0<x<a, 0<y< . The displacement components uy
and u, in the x and y- direction represented in the integral
form as [2] are

2 2
:I é(zyg _V(ZL:J"'O‘T}C‘X (8.1)
X
2 2
I 1[6‘8U (ZyUJ+aT}dy (8.2)
X

where v and o are the Poisson’s ratio and the linear
coefficient of thermal expansion of the material of the plate
respectively and U(x,y) is the Airy’s stress function which
satisfy the following relation:

2 Y y y

where E is the Young’s modulus of elasticity and T is the
temperature of the plate satisfying the differential equation

o°T o°T

—S Tt = 0 (8.4)

ox® oy

subject to the boundary conditions

T(0,y)=h(y) (85)

T(a,y)=Tf(y) (86)

T(x,0)0=0 (8.7)

T(x,0)=0 (8.8)

The stress components in terms of U are given by
_ o

O = ? (8.9)
— U

Ow =752 (8.10)
__

ny T oxoy (8.11)

Equations (8.1) to (8.11) constitute the mathematical
formulation of the problem under consideration.
IX. SOLUTION OF THE PROBLEM

Applying Fourier sine transform to the equations (8.4), (8.5)
and (8.6) and using (8.7), (8.8) one obtains

2T _

4 s p2Ts -0 ©9.1)
dx

where p2 = m2722 (9.2)
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Ts(0,m)=h (m) (9.3)
Ts(a,m) = fg(m) (9.4)

where 'Fs denotes Fourier sine transform of T and m is sine
transform parameter.

Equation (9.1) is a second order differential equation whose
solution gives

Ts (x,m)=Ae™ +Be ™ 9.5)

where A, B are arbitrary constants.
Using (9.3) and (9.4) in (9.5) one obtains

A+B=h (m) (9.6)
Ae™ +Be ™ =f (m) (9.7)
Solving (9.6) and (9.7) we get
A __fom) hempe™
_epa_efpa - epa_efpa
? _s pa
g___fs(m)  hi(me

et —e ™ el g™
Substituting the values of A and B in (9.5) one obtains

T = Gancpa) ™ sin(pe)
9.8)

Applying inverse Fourier sine transform to the equations (9.8)
one obtains the expression for temperature distribution T(X,y)
as

TGy == ((msin py[M}
m=1

sinh( pa)
_iiﬁ _(m)sin py[sinh_( p(x— a))}
7~ sinh( pa)
9.9)

where

()= [ f(y)sin pydy ,

hs(m) = [(y)sin pydy

Substituting the value of T(x,y) from (9.9) in (8.3) one obtains
the expression for Airy’s stress function U(x,y) as

- . sinh( px)
o Z s(m)sin py{—smh(pa)}
a_i amsin ] 20|
P sinh(pa)

X. THERMOELASTIC DISPLACEMENT FUNCTIONS

Substituting the value of U(x,y) from (9.10) in (8.1) and (8.2)
one obtains the thermoelastic displacement functions u, and
uy as

JaeC+v) o+ sin py | cosh(pa) -1
ux_{ T }Zf S(m){sinh(pa)}[ m }

m=1

[a+V)INE sinpy [ 1-cosh(pa)
[ z }ZhS(m)Linh(pa)}[ m }

m=1

U(x,y)=

(10.1)

0 - [a(2ﬁ+ v)}i? S (m){::z:g E;; }{ cos([rJna) —1}

m=1

a(2+v) Noo sinh(p(x —a)) | cos(pa) —1
_[ 7 }Zhs(m){ sinh( pa) }{ m }

m=1

(10.2)
XI. STRESS FUNCTIONS

Using (9.10) in (8.9), (8.10) and (8.11) the stress functions are
obtained as

REZAN . sinh(px)
Oy —( - jz s(m)sin py[—sinh(pa)}
0F \ao = sinh(p(x - a)) (LY
—(—th (m)sin py{ sinh(pa) }
aE sinh( px)
Oy ( . jz f (m)sin py{ h(pa)}

o (11.2)
ok = . sinh(p(x—a))
+ (—JZ h  (m)sin py[—sinh( 0a) }
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(eEN cosh(px)
_( V4 jZ s (m) cos py{sinh(pa)}
£ s sinh( pa)
XIl. SPECIAL CASE

y
1+y

s {(V)=| —— ey =| | a2y

1+y

Applying Fourier sine transform to the equation (12.1) one
obtains

T (m)= J' e sin(py)dy
l+y
=[ﬂe ][e‘p] (12.2)
2
h s (m) = j 5 |sin(py)dy
1+y
=(%j[e‘p] (12.3)
Substituting the values of Ts(m) and Hs(m) from

(12.2) and (12.3) in the equations (9.9) one obtains

(e N L-p e sinh( px)
T(X, y)_( 5 JZ[e P]sln py[—sinh(pa)}

m=1

h
( jz[e ]S py[smsn(nrf)li);a)a))} (124

XI1. NUMERICAL RESULTS
1

Set f== .1

obtain

TXY)  ~o[-p s sinh( px)
B _;‘[e ]S'n py[sinh(Zp)}

= 3.14, a = 2 m, in the equation (12.4) to

N

h 2
—Z[e s py{smSI(n o ))} 2

Hxy) (2 ) _ 3 e kincpy)

{sinh(px)}(ez) _{sinh(p(x—Z))}

sinh(2p) sinh(2p)
(13.1)
XIV. CONCLUSION
In both the problems, the temperature distribution,

displacement function and thermal stresses of semi-infinite
rectangular plate have been investigated with the aid of
integral transform techniques. The expressions are obtained in
terms of Bessel’s function in the form of infinite series. The
results that are obtained can be applied to the design of useful
structures or machines in engineering applications.

Any particular case of special interest can be derived by
assigning suitable values to the parameters and functions in
the expressions
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