
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 211

Design of Floating Point Multiplier using Modified

Wallace & Dadda Algorithms
Prof. Jyoti Goudar

1
, Prof. A H Birasal

2

1, 2
Assistant Professor, E & C Department, REC Hulkoti, Gadag, Karnataka, India

Abstract: - In computing, floating point describes a method of

representing an approximation of a real number in a way that

can support a wide range of values. Low power consumption and

smaller area are some of the most important criteria for the

fabrication of DSP systems and high performance systems.

Optimizing the speed and area of the multiplier is a major design

issue. This can be achieved using Wallace and Dadda algorithm

of an IEEE 754 single precision floating point multiplier.

Improvement in speed multiplication of Dadda and Wallace

multiplier is done using carry look ahead adder. Multiplier based

on Wallace and dada algorithms provides an area efficient and

high speed multiplication. The focus of this project is delay

comparison of floating point multiplier using Wallace tree and

Dadda tree algorithms. The Dadda tree multiplier is faster than

Wallace tree multiplier. Both uses XOR operation for sign bit

calculation and bias is used for exponent calculation. But

mantissa multiplication is calculating separately by using two

different techniques, those are Wallace and Dadda tree.

Wallace and Dadda tree involves three steps:[1]Generating

partial product using booth algorithm.[2]Partial products are

added using full adder and half adder until it is reduced to two

rows.[3] Final two rows are added using carry look ahead adder.

Now a day’s speech, video and other such real time

applications are required for mobile systems. For example cell

phone and laptop. Improving multipliers design directly benefits

the high performance embedded processors used in consumer

and industrial electronic products. The floating point multiplier

should be implemented to present both fast multiplication and

less hardware. Higher processor has been broadly used in

computer.

I. OBJECTIVE

he main objective of this study is to achieve high speed

single precision multiplication using booth algorithm in

Wallace and Dadda tree. This is achieved using verilog HDL

code. The generated partial products are added using full

adders and half adders. For final two rows addition carry look

ahead adder is used to calculate product of two floating point

numbers.

II. SCOPE OF THE PAPER

The aim here is to design and implement single precision

floating point multiplier using Wallace and Dadda tree

algorithm on Virtex 5.

Tools used for simulation

Xilinx ISE 14.2 design suite is used to implement floating

point multiplier using Wallace and Dadda algorithm in verilog

HDL.

III. FLOATING POINT MULTIPLICATION

. The IEEE 754 Standard is more used for floating point

multiplication and is adapted to many hardware and software

implementations.

The standard defines five basic formats depends on their base

and the number of bits used.

3.1 IEEE 754 Standards for Binary Floating Point

Multiplication:

There are three binary floating point formats, which can be

encoded using 32, 64 or 128 bits. The first two binary formats

are the „single precision‟ and „double precision‟ formats of

IEEE 754-1985 and third is called „quad‟.

SIGN EXPONENT MANTISSA

 31 30 22 0

IEEE (Institute of Electrical & Electronics Engineering.)

numbers are stored using scientific notation.

± Mantissa*2
exponent

We can represent single precision floating point numbers

with three binary terms:

1] Sign bit s: 1 bit.

2] Exponent field E‟: 8 bits.

3] Fraction field f: 23 bits.

E‟=E+127. 0 ≤ E‟ ≤ 255.

1) The actual exponent E IS IN THE RANGE OF -126

≤ E≤127

2) The basic aspects of working with floating point

numbers are two:

1. If number is not normalized, it can normalized by

shifting the fraction and adjusting the exponent.

 (a) Un-normalized value:

0 10001000 00101100000000000000000

T

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 212

There is no implicit 1 to the left of the binary point.

 Value represented=+0.0010110000….*2
9

 (b) Normalized value:

0 10000101 01100000000000000000000

Value represented=+1.011000000….*2
6

The scale factor is in the form of 2
i
. Shifting the mantissa

right by one bit position is rewarded by an increase of 1 in

exponent. Shifting the mantissa left by one bit position is

rewarded by a decrease of 1 in exponent.

2. When computations precede, a number that does not fall in

the required range. In single precision floating point numbers

normalized representation requires an exponent less than -126

or greater than +127. In first case underflow has occurred. In

second case overflow has occurred. Both are arithmetic

exceptions.

3.1.1 Exceptions:

The IEEE standard defines 5 types of exceptions that occurred

when flag bit sets.

3.1.1.1 Invalid Operation

All exponent bits values are „1‟ and all the mantissa

bits are equal to „0‟, then it represents infinity. If all exponent

bits values are „1‟ and all the mantissa bits are not equal to

„0‟, and then it represents Not a Number (NaN). The result of

invalid operation is NaN (Not a number).

3.1.1.2 Division by zero

If divisor is zero in ordinary arithmetic there is no

meaning for this expression. In computer language integer

division by zero may cause a program to terminate and if

floating point numbers may cause NaN (Not a number) value.

Division by zero results infinity and the multiplication of two

numbers also results infinity. Therefore to differentiate

between the two cases, a divide by zero exception was

implemented.

3.1.1.3 Underflow and overflow

In two cases underflow exception occurs: tininess

and loss of accuracy. Tininess is detected after or before

rounding when a result lies between ±2Emin. Loss of

accuracy is detected when the result is when a

renormalizations loss occurs. The underflow exception occurs

whenever tininess is detected after rounding and at the same

time result is inexact. The overflow exception occurs

whenever the result exceeds the maximum value. It is not

occurred when one operand is infinity, because infinity is

always exact.

The sign bit is 0 for positive numbers and 1 for

negative numbers. The field f contains a binary fraction. The

actual mantissa of floating point value is (1+f). For example if

f is 01110111…, the mantissa become 1.01110111…There

are many ways to write a number in scientific notation, but

there is always a unique normalized representation, with

exactly one non-zero digit to the left of the point.

0.456*10
3
=4.56*10

2
=45.6*10

1

A side effect is that we get a little more precision for given

number. There are 24-bits in mantissa, but we need to store

only 23 of them. The exponent field represents the exponent

as a biased number. It consist actual component plus 127 for

single precision floating point numbers. This converts all

single precision exponents from -127 to 127 into unsigned

numbers from 0 to 254.

 example shown below for single precision:

If exponent is 3, the e-field is 3+127=130=100000102

3.2 The binary representation of IEEE format for single

precision floating point number:

The decimal number is -12.375 that is first convert to binary

form. So the value is 1100.011(2). Normalize the number by

shifting the binary point until there is a single 1 to the left.

Shift binary point to left after 3-bits. i.e.

1100.011*2
0
=1.100011*2

3

The exponent is 3. Therefore in biased form it is

130=10000010.

The fraction is 100011.

-12.375

 1 10000010 10001100000000000000000

3.3 Floating point conversion to IEEE 754 format:

Ex1: The decimal number is 147.625

Step1: Convert decimal number to its equivalent binary

fractional form.

147.625=10010011.101

Step2: Normalize the binary fractional number.

10010011.101=1.0010011101*2
7

Step3: Convert the exponent to 8-bit excess-127 notation. Add

127 to exponent and convert it to 8-bit binary number.

7+127=134=10000110

Step4: Convert mantissa to buried bit format.

1.0010011101 0010011101

Step5: Write down 1+8+23=32 bit binary number.

147.625=0 10000110 00100111010000000000000

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 213

3.4 Floating point multiplier block diagram

Fig3.4: Block diagram of floating point multiplier

The above figure shows block diagram of floating point

multiplier. It consist mainly five steps:

Step1: The sign of floating point number n1 and n2 are

logically XOR together.

Sign=Sign1 XOR sign2. If both inputs are 0, then output is 0.

If sign1 is 0 and sign2 is 1, then output is 1. If sign1 is 1 and

sign2 is 0, then output is 1. If both inputs are 1, then sign

output is 0.

Step2: IEEE exponents are stored as 8-bit unsigned integers

with a bias of 127. Take example 1.10101*2
3
 the exponent is

3 added to 127 and sum is 130 (100000102).If binary exponent

is unsigned; it cannot be negative. The largest possible

exponent is 128. It is added with 127 and sum is 255. This is

largest unsigned value represented by 8-bits.The range is from

1.0*2
-127

 to 1.0*2
+128

The exponent is calculated by adding

both exponent of floating point numbers and the result is

subtracted from bias (127). E=E1+E2-127

Step3: The mantissa is calculated by multiplying both

mantissa of floating point numbers.

M=M1*M2. Multiplication is done using any algorithm.

Those are array multiplier, booth multiplier, parallel

multiplier, conventional Wallace multiplier, Wallace with

booth multiplier, dadda multiplier etc. Due to large delay of

multipliers, different methods have been designed to increase

speed. The partial products are generated using booth

algorithm. The partial product bits are added using half adders

and full adders until two rows get, at finally these rows are

added using fast carry look ahead adder. Dadda multiplier

algorithm is faster than remaining all types of multipliers. If

without booth algorithm multiplication is performed then it

generates more number of multiplications. It takes more delay

to execute. Multiplication is a basic and important building

block in all arithmetic logic units.

Step4: Normalize the result value if value is un-normalized, so

that there is a 1 just before the decimal point. Shifting decimal

point one place to the left increments the exponent by 1,

Moving one place to right decrement the exponent by 1. For

example, decimal number is 4566.23 is normalized as

4.56623*10
3
. Same way the floating point binary value

1100.100 is normalized as 1.100100*2
3

by moving the

decimal point 3 positions to the left and multiplying by 2
3
.In a

normalized mantissa, the digit 1 always appears to the left of

the decimal point. The leading 1 is lost from the mantissa in

the IEEE storage format because it is redundant. Sign,

exponent and normalized mantissa are grouped into the binary

IEEE representation.

Step5: If mantissa bits are more than 5-bits rounding is

required. If we applied the truncation rounding method then

the mantissa is 5-bits.At finally product of two floating point

numbers is getting using IEEE standard.

3.5 Floating point multiplication algorithm:

Fig3.5a: Flowchart of floating point multiplier

The following algorithm is used to multiply two floating point

numbers:

1).Multiplication (1.M1*1.M2): Its response is multiplying

the unsigned significant and putting the decimal point in the

multiplication product. Multiplication is performed on 23-bits.

Operands x and y are used for multiplication. The floating

point number x consist of sign bit s_ x, exponent bits e_ x and

mantissa bits m_ x. The floating point number y consists of

sign bit s_ y, e_ y and mantissa bits m_ y.

1. Putting the decimal point in the product.

2. Adding the exponents (e_ out=e_ x + e_ y –127): Its

response is to add two floating point number exponents and

sum is subtracted from bias 127. An 8-bit carry look ahead

adder is used to add two input exponents. This adder uses

generate and propagate functions. Gi is referred as the carry

generate signal. So carry C i+1 is generated whenever Gi =1. Pi

is referred as the carry propagate signal. When Pi =1, the

input carry is propagated to the output carry. C i+1=Ci.

Computing the values of P and G depends on input bits.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 214

Fig3.5b: Block diagram of carry look ahead adder

 Full adders are used to calculate sum, propagate and

generate bits. The ai, bi

 and ci are input bits. Si and Ci+1 are output bits.

 Pi= ai+ bi Gi= ai . bi

 Si= ai xor bi xor ci

 Ci+1=Gi + Pi.ci

 Carry look ahead adder is faster because it generates carry

bits parallel by an additional logic circuit when inputs

change. It uses carry bypass logic ti speed up the carry

propagation.

4. Obtaining sign by performing the operation s1 XOR s2.

 i.e. s_ out=s_ x XOR s_ y. Multiplying one negative number

and one positive number results negative number product.

If both numbers are positive or negative then product is

positive number. According to logical XOR truth table

multiplication is performed. When both inputs are 0 or 1, the

output is 0. When any one of the input is 0 or 1, the output is

1.

5. Normalizing the result: The result of the significant

multiplication is normalized to have a leading 1 to the left of

the decimal point. If product is 1010.0000100(2) then its

normalized value is 1.0100000100(2).

6. Rounding the result to fit in the 32-bits.

3.5.1 Floating point numbers multiplication examples:

Ex1: 12.52 * 15.25=190.93

 12.52 1100.10000101

 15.25 1111.01000000

 Normalized value of first number is

1.10010000101*10
3

10010000101

 Normalized value of second number is

1.11101000000*10
3

11101000000

 Exp1=3+127=130=10000010

 IEEE format of first number is:

 0-10000010-10010000101000000000000

 Exp2=3+127=130=10000010

 IEEE format of second number is:

 0-10000010-11101000000000000000000

 Exp=Exp1+Exp2-127

 =130+130-127

 Exp=133

 Mantissa multiplication:

 1.10010000101

 1.11101000000

--

 000000000000

 000000000000

 000000000000

 000000000000

 000000000000

 000000000000

 110010000101

 000000000000

 110010000101

 110010000101

 110010000101

 110010000101

 10.1111101110110001000000

The normalized value of product is

1.01111101110110001000000 × 10
1

Total exp =product_ exp + exp -127

 =1+133-127

Total exp =7

The product of mantissa of two numbers is

1.01111101110110001000000.

Shift decimal point to right after 7 bits. So the product is

10111110.1110110001000000(2) =190.93(10)

 Normalized form of product is

1.01111101110110001000000*10
7

=

01111101110110001000000

Exp=7+127=134=10000110

Sign of product is 0.

IEEE form of product is:

0-10000110-01111101110110001000000

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 215

IV. BOOTH3 ALGORITHM

The 16-bit booth 3 multiplication concept is also used for 23-

bit booth 3 multiplication. Multiplier and multiplicand both

are 23-bits. The multiplier is divided into 8 groups. Each

group contains 4-bits binary value as shown in figure 4.1a.

4.1 Multiplication of two binary numbers using booth 3

algorithm

Fig4.1a: 16-bit booth 3 multiplication

In each group multiplier 4
th

 bit is checked and if it is 0 then

sign bit is S. If it is 1 then sign bit is ~S. The partial products

reduced from 23 to 9 by using boot 3 algorithms. The partial

product selection table is shown in figure. Each partial

product is chosen from the set 0, ±M, ±2M, ±3M, ±4M.

Except 3M all multiples are obtained from shifting and

complementing of the multiplicand.

The following steps are used to perform booth3 algorithm:

1) The multiplication of two 23-bits binary numbers using

Booth algorithm implies reduction in number of digits to 8 as

shown below figure 4.1b..

 Fig4.1b: multiplier recoding

2) The partial products multiplexer selects one operation out

of nine possible operations depending on value of the

corresponding signed bit as shown in figure4.1c.\

 M

 ~M

 2M to Wallace or dadda

 ~2M tree To Wallace tree or

 3M dadda tree

 ~3M

 4M

 ~4M

Fig4.1c: Partial product multiplexer

3) The partial product multiplexer selects M if multiplier 4-

bits binary value is 0001 and ~M is selected when binary

value of multiplier is 1101. The multiplexer selects 2M when

binary value of multiplier is 0011. The multiplexer selects

~2M when binary value of multiplier is 1011. The partial

product multiplexer selects 3M when binary value of

multiplier is 0101.

For ex. The operation of 3M is:

y23 y22 y21 …. y3 y2 y1 y0 0 (2y)

 y23 y23 y22 …. y4 y3 y2 y1 y0 (y)

 ---z25 z24

z23 z22 …. z4 z3 z2 z1 z0 (3y)

4.2 Logic diagram of booth3 partial product generator

Fig4.2: 16-bit booth 3 partial product generator logic circuit

MUX

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 216

The above logic diagram shows booth 3 algorithm. This

modified booth algorithm is most used method to generate

partial product. This algorithm generates less partial products

compare to other techniques by using reduction method.

Therefore compression speed is enhanced. 2-bit, 3-bit, 4-bit

recoding is used for this algorithm. The 4-bit recoding means

that the multiplier B is divided into groups of four bits and the

algorithm is applied to this group. The booth algorithm is

implemented into two steps:

1) Booth decoding

2) Booth selecting

 The booth encoding is used to produce one of the four

values in the multiplier group.

The booth selecting circuit is used to produce a partial product

bit k. This algorithm reduces partial products by a factor of 2,

without adding before to produce the partial products.fig

shows the dot diagram for a 23 *23 multiplication. The

multiplier is divided into overlapping groups of 4 bits and

each group is decoded to select a single partial product as per

the selection table. Each partial product is shifted 3 bit

positions with respect to its neighbors. The numbers of partial

products are reduced from 23 to 9. In general there is (n+2)/2

partial products, where n is the operand length. Many required

multiples are obtained by a simple shift of the multiplicand.

Negative multiples taken in two‟s complement form, which is

obtained using a bit by bit complement of the corresponding

positive multiples, with a 1 added at the least significant bit of

partial product. Booth algorithm also reduces dots in dot

diagram. In this partial product groups are assigned to a set

0,M,2M,3M,4M,-0,-M,-2M,-3M,-4M.

 M is multiplicand value. –M is complement of

multiplicand value. 2M is circular left shift by 1-bit position. -

2M is circular left shift of complement of multiplicand 1-bit

position. 3M is (a+2a), that means „a „refers multiplicand and

2a is circular shift of a. -3M is complement of (a+2a) value.

4M is circular shift of multiplicand by 2-bit position. -4M is

complement of 4M value. The number of dots, constants and

sign are added is 126 for 23*23 multiplier and height of

partial product is now 9.

 Generation of the multiple 3M requires adder circuit. It

cannot be obtained by simple shifting or complementing of

multiplicand. This increases the complexity of the partial

product generation. The amount of hardware and delay

depends upon number of partial products to be added. Booth

algorithm generates less partial products, so hardware cost is

less and it improves performance of multiplier. Booth is used

in multiplier with long operands i.e. greater than 16-bits.

Booth 2 is fastest algorithm, booth 3 is power efficient and

booth 4 requires less area. In booth 3 algorithm starting 27

bits are dots and 28
th

, 29
th

 and 30
th

 bits are sign bits, which are

S. 31th bit is complement of sign bit, that is ~S. If MP [3] is 0,

then sign is 0. So it represents S. If MP [3] is 1, then sign is 1.

So it represents ~S.

V. PROPOSED ALGORITHMS

5.1 Floating point multiplication using Wallace algorithm

 In 1964 C.S.Wallace introduced a Wallace tree

multiplication algorithm. It includes three steps to multiply

two numbers.

Step 1: The partial products are generated using booth 3

algorithm. Nine partial products are generated. Two 23-bit

numbers are used as inputs, those are multiplicand and

multiplier. The multiplier input is divided into 8 groups. Each

group consists of 4-bit binary value. If 0001 in the group then

multiplicand value should write as it is. If 0011 in the group

then 2* multiplicand value should write. Similarly

±3multiplicand and ±4multiplicand are represented for other

binary numbers shown in multiplication using booth3

algorithm table.

Step 2: In first stage the nine partial products are divided into

3 levels. In level-1 the full adder (3:2 counter) and half adders

(2:2 counter) are used for 3-bits and 2-bits respectively. The

full adder and half adder results sum and carry bits are stored

in 2
nd

 stage, level-1. In level-1 also same full adder and half

adders are used, these outputs sum and carry are stored in

further level. This continues in same way until two rows get.

Step3: These two rows are added using carry look ahead

adder. It is faster adder so the delay of multiplication is less.

Overall the multiplication consist 5 stages.Stage-1 consist of 3

levels. Stage-2 consists of 2 levels. Stage-3 consists of 1 level.

Stage-4 consist of 1 level and finally stage-5 also consist of 1

level i.e. using CLA the addition is performed. Two CLA‟s

are used to perform addition and to get product output. At

finally we get product of two numbers. Single precision 32-bit

floating point multiplication of two numbers consists of 1-bit

sign, 8-bits exponent and 23-bits mantissa. The 23-bit two

floating point numbers mantissa are multiplied using above

Wallace technique. The sign bit of first number and sign bit of

second numbers are XOR to get sign bit multiplication. When

both are 0 or 1, the output is 0. When any one output is 0 or 1,

the output is 1. Exponent is calculated using propagate and

generate function. Using carry look ahead adder the 8-bits of

exponent are added. The difference between Wallace tree

multiplier and column compression multiplier is that, in

Wallace tree each possible bit in each column is covered by

3:2 counter and 2:2 counter, until finally the partial product

has two rows. This algorithm consists of 5 stages.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 217

Fig 5.1: Dot diagram of 23-bit Wallace multiplier.

Stage-1: It consists of 3 levels as shown in figure5.1. The

level-1 of stage-1 performs 36 full adders‟ functions. MP [0]

is 0
th

 bit of multiplier. It is always 0, because when grouping

the multiplier which contains 4 bits in each group we should

add 1 zero to multiplier. If MP [3] is 0, the sign

bit is 0 and it is represented as S. If MP [3] is 1, the sign bit is

1 and it is represented as ~S. Nine partial products are

produced using booth algorithm. These partial products are

divided in to 3 levels. The level-2 consists of 39 full adders

and level-3 consists of 35 full adders. The sum and carry

outputs of level-1 of stage-1 are stored in level-1 of stage-2.

Stage-2: Level-1 consists of 6 half adders and 30 full adders.

Level-2 of stage-1 sum and carry output bits are stored in this

stage-2.This continues until two rows get. The level-2 consists

of 5 half adders and 30 full adders.

Stage3: It consists of 12 half adders and 31 full adders. Two

dots are used for half adder operation and three dots are used

for full adder operation.

Stage4: It consists of 18 half adders and 30 full adders.

Stage5: Two CLA‟S are used to add last two rows of Wallace

algorithm.CLA1 add sum bits from S226 to S248 with carry

bits from C225 to C247. CLA2 add sum bits from S249 to

S271 with carry bits from C248 to C270. Two half adders are

used at beginning and end of stage-5. At finally we get

product of two binary numbers. Product is assigned from S0,

S110, S181, S224, and S272 to S321.

Totally Wallace multiplier uses:

1) Full adders=231.

2) Half adders=43.

3) CLA=2.

Wallace multiplier require more number of full adders, half

adders compare to Dadda multiplier. So Wallace is more

complex to design but Dadda multiplier is easy to design the

single precision floating point multiplier. Wallace multiplier

requires more wires compare to Dadda multiplier. Carry look

ahead adders are used to improve the speed of the design.

These are faster adders compare to all other adders because

they uses carry generate and propagate functions. The dot

diagram of Wallace multiplier is explained above clearly.

Stage levels are reduced as stage number increase. Final stage

is carry look ahead adder, from that result product of two

numbers will get.

5.2 Floating point multiplication using Dadda algorithm

Dadda multiplier developed Wallace‟s multiplier by defining

a few counters in partial product reduction stage using carry

look ahead adder. Dadda uses many ways to compress the

partial product bits using 3:2 and 2:2 counters. Fig shows the

process of 23*23 bits dot diagram for dadda multiplier. Each

dot represents a bit. In first step columns having more than six

dots are reduced to 6 dots, next reduced to 4 dots, next

reduced to 3 dots and at final dots are reduced to 2 dots in a

column. These two rows are added using carry look ahead

adder. Each half adder uses two dots, outputs one in the same

column and one in the next more significant column and each

full adder uses three dots, outputs one in same column and

one in the next more significant column so that no column in

step 1 will have more than 6 dots.

 In each case the rightmost dot of the pair that is

connected by a line is in the column from which the inputs

were taken from the adder. In next step reduction is no more

than 4 dots per column, further no more than three dots per

column, at last no more than two dots per column is

performed. The height of the matrices is obtained by

functioning back from the final two row matrix and restricting

the height of the each matrix to the largest integer that is no

more than 1.5 times the height of its successor. Each matrix is

produced from its predecessor in one adder delay. Since the

number of bits in the words to be multiplied, the delay of the

matrix reduction process that reduces is proportional to log n,

where n is word size. Final two row matrix can be

implemented as a carry look ahead adder and total delay for

this multiplier is proportional to the logarithm of the word size

n.

5.2.1 Partitioning the partial products:

 Partial products are divided into two parts: part-o and

part-1. In which part-0 and part-1 consists of n columns. The

two parts are separately performed and finally added both

result together. The partial products of each part are reduced

to two rows by the using 3:2 counter and 2:2 counters by

referring dadda algorithm. The grouping of 3 dots and 2 dots

in same column refers to 3:2 and 2:2 counters respectively. S

and C denote partial sum and partial carry bits.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 218

Part-0: (Stage-1):In stage-1 nine partial products are divided

into 3 levels as shown in figure5.2.1a. The partial products are

generated using booth 3 algorithm. MP [0] is always 0

because when grouping the multiplier bit 0 is replaced with

zero. Ex: Multiplier is 10010110110100010

Fig5.2.1a: Dot diagram of 23-bit Dadda multiplier.

By using logic diagram the 9 partial product generation

equation is wrote:

0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0

 Extra bit 0 {MP [0]}

Using FOR loop partial products are generated. In each

group if MP [3] is 0, then sign bit is 0 and it is noted to S. If

MP [3] is 1, then sign bit is 1 and it bits noted as ~S. That

means complement of S is calculated. In level-1 one half

adder functions is performed and 15 full adders are

performed. In level-2 one half adder and 12 full adders are

used. In level-3 one half adder and 10 full adders are used.

Stage-2: S0, S1……..S15 bits are stored in level-1 of stage-2.

The generated carry output bits are written in next column by

one bit shift. The c0 is carried to next column where it is to be

added up with sum s1 of a 3:2 counter. The carry c1 of 3:2

counter is added to next column. Stage-2 full adders and half

adders outputs sums and carries are stored in next column in

level-1 and level-2. The output sums S16 to S28 are added to

previous sums and carries in level-1. Totally 21 full adders

and 1 half adder used in this level. In level-2 of stage-2 18 full

adders and 1 half adder and another 1 half adder are used to

perform addition.

Stage-3: It consists 1 half adder and 25 full adders. The

addition is used same process.

Stage-4: It consists of 2 half adder and 28 full adders. The bits

C62 and C107 are added using half adders. The process is

continues until two rows to get.

Stage-5: The two CLA‟S CLA1 and CLA2 and 5 half adders

are used to add the input bits.CLA is faster than other adders.

It uses carry propagate and generate functions. The starting

bits addition is performed using half adder. Four half adders

are used at beginning. Next S109 to S137 and C108 to C136

bits are added using two CLA‟S. At last using one half adder

for C137 and C172 the last sum bit S173 is getting. Also it

generates carry bit C173.Finally S138 to S173 are result sum

bits of part-0 in dadda algorithm.

C139 to C174 are result carry bits of part-0 in dadda

algorithm.

Fig5.2.1b: Dot diagram of 23-bit Dadda multiplier.

Part-1: (Stage-1):

The partial products are shifted upward to make a not more

than 6 bits in first step as shown in figure5.2.1b. The satge-1

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 219

consists of two levels. In level-1 half adders are 2 and full

adders are 6. P4 [38] and P5 [38] bits are added using half

adder. The starting bit is 31
st
 bit. The partial product 31

st
 to

50
th

 bits are considered for calculation. P2 [31], P3 [31] and

P4 [31] bits are added using full adders. In this full adder „a‟

is treated as P2 [31], „b‟ is treated as P3 [31] and „Cin‟ is

treated as P4 [31]. In level-2 4 half adders are used.

Stage-2: It consists of two levels.Level-1 consists of 2 half

adders and 12 full adders. The sums of level-1 of stage-1 are

stored in level-1 of stage-2. In that level next column consists

of carry bits of level-1 of stage-1. In level-2, 3 half adders and

7 full adders are used. The sum and carry output bits of

previous stage bits are added using half adders and full adders

in next stage.

Stage-3: It consists of 3 half adders and 14 full adders. The

partial products P [7] and P[8] bits are added together.

Stage-4: It consists of 2 half adders and 17 full adders. The

partial products P [8] and P[9] bits are added together in

stage-4.

Stage-5: One CLA is used to perform addition of sum bits

from S228 to S245 and carry bits from C227 to C244.

Another 2 half adders are used at beginning bits and end bits.

At finally we get part-1 output of dadda multiplier. The result

sum bits are from S246 to S266 and carry bits are from C247

to C267. At last the product of two binary numbers will get by

adding part-0 output and part-1 output. From S138 to S169

are directly assigned to output and next 1 half adder and 2 full

adders are used. At last 18 half adders are used to get final

product.

Totally dadda multiplier uses:

1) Full adders=187.

2) Half adders=55.

3) CLA=3.

VII. SIMULATIONS AND RESULTS

The single precision floating point multiplier using

Wallace algorithm and dadda algorithms are designed using

Xilinx ISE 14.2 design suit and have been synthesized with

XC5VLX110T of Virtex-5 as the target device. Proposed

algorithm achieves from writing Verilog code. The delay of

single precision floating point multiplier using Wallace

algorithm is compared with delay of single precision floating

point multiplier using dadda algorithm. This chapter mainly

discusses the simulation results of floating point multiplier

using Wallace and dadda algorithm and analysis of

performance goals.

7.1 Exponent multiplication of two floating point numbers:

The two numbers are: 16.25 × -23.75

1) 16.25 =10000.01 =1.000001 × 10
4

 exp1=4+127=131=10000011

2) 23.75 =10111.11 =1.011111 × 10
4

exp2=4+127=131=10000011

Inputs:

16.15 0 10000011

00000100000000000000000

23.75 1 10000011

01111100000000000000000

Sign=sign1 XOR sign2

 =0 XOR 1 =1

exp =exp1+exp2-127

 =131+131-127

Mantissa M=11.00000011111 = 1.100000011111

expf =135+1=136

Final exp is 136-127 = 9

M = 1100000011.1112 = 385.937510

Fig7.1: Two floating point number exponent multiplication output

The product exponent is calculated by adding two floating

point number exponents and addition result is subtracted from

bias 127.

Sign=1

exp =135=10000111

Product = 1 10000111

10000001111100000000000

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 220

exp1=100000112=13110

exp2=100000112=13110

exp =exp1+exp2-127

 =131+131-127=13510=100001112

The single precision floating point representation consist 8-bit

exponent. The exponent field represents the exponent as a

biased number. It contains the actual exponent plus 127 for

single precision. This converts all single precision exponents

from -127 to 127 into unsigned numbers from 0 to 254. The

resultant exponent is calculated using generate and propagate

functions in verilog code.

7.2 Generation of partial products using booth3 algorithm:

Fig7.2: Partial products output

The variables amp and amc are multiplier and

multiplicand binary values. Those are 23-bits wide. As

explained in chapter 4 each partial product is chosen from the

set 0, ±M, ±2M, ±3M, ±4M. Except 3M all multiples are

obtained from shifting and complementing of the

multiplicand. Using partial product generation table for 23-bit

mantissa nine partial products are generated.

The partial products are assigned as pp1, pp2, pp3,

pp4, pp5, pp6, pp7, pp8, pp9. Many intermediate wires and

registers are used to calculate partial products. FOR loop is

used to generate each partial product. To calculate 3M the 2M

is added with M. The partial product generation equation is

written using XOR, AND, OR and NOT basic logic gate

expressions. Without booth algorithm 23 partial products are

generating but using booth algorithm only 9 partial products

are generating.

7.3 Using Wallace algorithm floating point multiplier output:

Fig7.3: The output of floating point multiplier using Wallace algorithm

The variables „a‟ and „b‟ are 32-bit inputs. These two

floating point numbers are represented in IEEE 754 format.

The verilog code is written in structural mode.

a = 01000001100000100000000000000000

b = 11000001101111100000000000000000

These two floating point numbers are multiplied and output

product is generated.

Pro = 110000111100000011111000000000

Exponent calculation is above explained and sign bit

calculation is performed using logical XOR function. Floating

point multiplication using Wallace algorithm uses more

number of full adders and half adders compare to dadda

algorithm floating point multiplication.

7.4 Using Dadda algorithm floating point multiplier output:

Fig7.4: The output of floating point multiplier using Dadda algorithm

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 221

Dadda algorithm floating point multiplication uses

same steps like Wallace algorithm but mantissa multiplication

is different.Booth3 algorithm generates 9 partial products. The

same partial product generation code is used for both Wallace

and dadda algorithms. In dadda algorithm the partial products

are divided in to 2 parts.

Part-0 and part-1 operations are separately performed

and finally these results are added together to get final product.

Dadda algorithm uses less full adders and half adders compare

to Wallace algorithm. Therefore it is faster than floating point

multiplier using Wallace algorithm. Mantissa1 and mantissa2

are 23-bit wide. The product is also IEEE754format. We can

convert that to decimal point number.

7.5 Device Utilization Summary

Common components such as flip-flops, LUTs,

block RAM and multiplexers make up the basic logic

structures on a Virtex-5. A collection of these basic structures

is called as slice or Configurable Logic Block (CLB). The

numbers of slice registers used are 253 and number of slice

LUTs are 958 in floating point multiplier using Wallace

algorithm. Information about map report and device

utilization will give whether design fits into the device or not.

Table7.5a: Design summary of floating point multiplier using Wallace
algorithm.

Table7.5a and 7.5b shows the slice utilization for floating

point multiplication using Wallace and Dadda algorithm. As

shown in the table, both Wallace and Dadda algorithm

multiplication use 2% of the slice registers, LUTs, logics and

slices. Information about map report and device utilization

will give whether design fits into the device or not. As

proposed design uses 2% of the available resources, one can

tell that design fits into the Virtex-5.

Table7.5b: Design summary of floating point multiplier using dadda algorithm.

7.4.2 Timing Summary

 The proposed solution processes data at a rate of 8 bytes

per cycle at 47.083MHz. Clock frequency is used to calculate

throughput. Timing summary provides statistics on average

routing delays and performance versus constraints.

 Timing summary for floating point multiplier using

Wallace algorithm:

 Speed grade:-2

 Minimum period: 21.239ns

 Minimum input arrival time before clock: 4.20ns

 Maximum output required time after clock: 2.826ns

 Maximum combinational path delay: No path found

 Timing summary for floating point multiplier using Dadda

algorithm:

Speed grade:-2

Minimum period: 20.797ns

Minimum input arrival time before cloc4.200ns

Maximum output required time after clock: 2.826ns

Maximum combinational path delay: No path found

VIII. ADVANTAGES DISADVANTAGES AND

APPLICATIONS:

8.1 Advantages:

1. Floating point multiplier using Wallace and dadda

algorithm designs presented here are very lean and

require less resource when implemented on Virtex-5.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 222

2. Wallace and dadda multiplier algorithms have less

delay.

3. The number of logic levels required to perform the

summation is reduced in Wallace and dadda

algorithm compare to other multiplier algorithm

techniques.

4. Wallace and dadda multipliers algorithms are faster

because to generate less partial products these are

adopt booth3 algorithm. It uses smaller area and low

power dissipation.

5. In both Wallace and dadda algorithm carry look

ahead adders are used instead of carry select adders or

ripple carry adders, so carry look ahead adder is one

of the fastest adder and having more advantages

among all the available adders.

8.2 Disadvantages:

 Wallace and dadda algorithms are complex to layout

in VLSI design and have irregular wires.

8.3 Applications:

1. High Speed Signal Processing that includes DSP

based applications.

2. DWT and DCT transforms used for image and wide

signal processing.

3. FIR and IIR Filters for high speed, low power

filtering applications.

4. Multi-rate signal processing applications such as

digital down converts and up converters

IX. CONCLUSION

In the proposed work design of floating point

multiplier using Wallace and Dadda algorithm with carry look

ahead adder on FPGA is presented that is used for DSP

applications. Modified booth3 algorithm is used to design fast

multiplier. So floating point multiplier using Dadda algorithm

with carry look ahead adder is faster than floating point

multiplier using Wallace algorithm with carry look ahead

adder. Inherently parallel design of algorithm allows an

efficient hardware implementation. Dadda multiplier has

smaller delay. The simulations and synthesis results of

modules are provided.

IEEE 754 standard based floating point

representation has been used. The unit has been coded in

Verilog and has been synthesized. Carry look ahead adder is

used in the design of final stage adder of Wallace and dadda

tree used for mantissa multiplication and in the exponent

addition. The dadda multiplier has less number of reduction

stages and levels compared to other multiplier techniques.

 Algorithms are designed using Xilinx ISE 14.2 design

tool and implemented on Virtex-5. Synthesis report shows that

proposed design achieves area and performance goals.

Comparison of synthesis report of floating point Wallace &

Dadda multipliers using carry look ahead adder:

Table8.1 Delay comparison of Wallace and Dadda floating point multiplier

X. FUTURE SCOPE

The designed floating point unit operates on 32-it

operands. It can also design for 64-bit operands to enhance

precision. It can be extended to have more mathematical

operations like addition, subtraction, division, square root,

trigonometric, logarithmic and exponential functions. In

future implementing higher compressors for Wallace tree and

Dadda tree used for mantissa multiplication can further

increase the efficiency of the floating point multiplier in terms

of speed.

A few researchers have shown that there is a

considerable improvement in the delay by using higher order

6:2, 7:2, 9:2 compressors for Wallace tree but no paper for

Dadda tree. Exceptions like overflow, underflow, inexact,

division by zero, infinity, NAN etc are incorporated in the

floating point multiplier.

BIBLIOGRAPHY

[1]. Rizwan Mudassir, et al., “Switching Activity Reduction in Low
Power Booth Multiplier”, IEEE, 2008.

[2]. M. 0. Lakshmanan, Alauddin Mohd Ali, "High Performance

Parallel Multiplier Using Wallace-Booth
[3]. Algorithm," IEEE International Conference on Semiconductor

Electronics, pp. 433-436, 2002.

[4]. Masataka Matsui and James B. Burr, “A Low-Voltage 32 x 32-Bit
Multiplier in Dynamic Differential Logic,IEEE”, 1995.

[5]. Nishant Bano et. al / VSRD International Journal of Electrical,

Electronics & Comm. Engg.”Analysis of various 16-bit Booth
Multipliers”, Vol. 2 (1), 2012

[6]. Robert F. Shaw, “Arithmetic Operations in a Binary Computer,”

Review of Scientific Instruments, vol. 21, pp. 687-693, 1950.

[7]. J. C. Majithia and R. Kitai, “An Iterative Array for Multiplication

of Signed Binary Numbers,” IEEE Transactions on Electronic

Computers, vol. EC-13, pp. 14-17, 1964.
[8]. R. De Mori, “Suggestions for an I.C. Fast Parallel Multiplier,”

Electronics Letters, vol. 5, pp. 50 -51, 1965.

[9]. H. H. Guild, “Fully Iterative Fast Array for Binary
Multiplication,” Electronics Letters, vol. 38, pp. 843-852, 1968.

[10]. A.D.Pezaris, “A 40ns 17-bit by 17-bit Array Multiplier,” IEEE

Transactions on Computers, vol. C-20, pp. 442-447, 1971.
[11]. Edwin de Angel and Earl E. Swartzlander, Jr., “An Ultra Low

Power Multiplier,” International Conference on Signal Processing

Applications and Technology, pp. 2118-2122, 1995.

Floating point

multiplication using

Wallace algorithm.

Floating point

multiplication using Dadda

algorithm

No. of

slices
253/12480=2% 253/12480=2%

No. of

LUTs
913/12480=7% 798/12480=6%

Delay 10.619ns 10.398ns

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue III, March 2018 | ISSN 2278-2540

www.ijltemas.in Page 223

[12]. S. Shafiulla Basha1, Syed. Jahangir Badashah, “Design and

Implementation of radix-4 based high speed multiplier for alu‟s
using minimal partial products” July 2012.314 Vol. 4, Issue 1, pp.

314-325

[13]. P. R. Cappello and K Steiglitz, “A VLSI layout for a pipe-lined
Dadda multiplier,” ACM Transactions on Computer Systems

1,2(May 1983) ,pp. 157-17

[14]. Baugh, Charles R.; Wooley, B.A., "A Two's Complement Parallel
Array Multiplication Algorithm," Computers, IEEE Transactions

on , vol.C-22, no.12, pp.1045,1047, Dec. 1973

[15]. Wallace, C. S., "A Suggestion for a Fast Multiplier," Electronic
Computers, IEEE Transactions on , vol.EC-13, no.1, pp.14,17,

Feb. 1964

[16]. L. Dadda, “Some schemes for parallel multipliers,” Alta
Frequenza, vol. 34, pp. 349–356, 1965

[17]. Townsend, W. Swartzlander, E. Abraham, J., "A Comparison of

Dadda and Wallace Multiplier Delays". SPIE Advanced Signal
Processing Algorithms, Architectures, and Implementations XIII.

[18]. Kogge, Peter M.; Stone, Harold S., "A Parallel Algorithm for the

Efficient Solution of a General Class of Recurrence Equations,"
Computers, IEEE Transactions on , vol.C-22, no.8, pp.786,793,

Aug. 1973

[19]. Brent, Richard P.; Kung, H. T., "A Regular Layout for Parallel
Adders," Computers, IEEE Transactions on , vol.C-31, no.3,

pp.260,264, March 1982

[20]. Han Tackdon, Carlson, D.A., "Fast area-efficient VLSI adders,"
Computer Arithmetic (ARITH), 1987 IEEE 8th Symposium on,

vol., no.,pp.49,56, 18-21 May 1987

