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Abstract: - In computing, floating point describes a method of 

representing an approximation of a real number in a way that 

can support a wide range of values. Low power consumption and 

smaller area are some of the most important criteria for the 

fabrication of DSP systems and high performance systems. 

Optimizing the speed and area of the multiplier is a major design 

issue. This can be achieved using Wallace and Dadda algorithm 

of an IEEE 754 single precision floating point multiplier. 

Improvement in speed multiplication of Dadda and Wallace 

multiplier is done using carry look ahead adder. Multiplier based 

on Wallace and dada algorithms provides an area efficient and 

high speed multiplication. The focus of this project is delay 

comparison of floating point multiplier using Wallace tree and 

Dadda tree algorithms. The Dadda tree multiplier is faster than 

Wallace tree multiplier. Both uses XOR operation for sign bit 

calculation and bias is used for exponent calculation. But 

mantissa multiplication is calculating separately by using two 

different techniques, those are Wallace and Dadda tree. 

Wallace and Dadda tree involves three steps:[1]Generating 

partial product using booth algorithm.[2]Partial products are 

added using full adder and half adder until it is reduced to two 

rows.[3] Final two rows are added using carry look ahead adder.  

Now a day’s speech, video and other such real time 

applications are required for mobile systems. For example cell 

phone and laptop. Improving multipliers design directly benefits 

the high performance embedded processors used in consumer 

and industrial electronic products. The floating point multiplier 

should be implemented to present both fast multiplication and 

less hardware. Higher processor has been broadly used in 

computer.  

I. OBJECTIVE 

he main objective of this study is to achieve high speed 

single precision multiplication using booth algorithm in 

Wallace and Dadda tree. This is achieved using verilog HDL 

code. The generated partial products are added using full 

adders and half adders. For final two rows addition carry look 

ahead adder is used to calculate product of two floating point 

numbers.  

II. SCOPE OF THE PAPER 

The aim here is to design and implement single precision 

floating point multiplier using Wallace and Dadda tree 

algorithm on Virtex 5. 

Tools used for simulation 

Xilinx ISE 14.2 design suite is used to implement floating 

point multiplier using Wallace and Dadda algorithm in verilog 

HDL. 

III. FLOATING POINT MULTIPLICATION 

. The IEEE 754 Standard is more used for floating point 

multiplication and is adapted to many hardware and software 

implementations. 

The standard defines five basic formats depends on their base 

and the number of bits used.  

3.1   IEEE 754 Standards for Binary Floating Point 

Multiplication: 

There are three binary floating point formats, which can be 

encoded using 32, 64 or 128 bits. The first two binary formats 

are the „single precision‟ and „double precision‟ formats of 

IEEE 754-1985 and third is called „quad‟. 

SIGN                                       EXPONENT MANTISSA 

     31           30                       22                       0                                           

IEEE (Institute of Electrical & Electronics Engineering.) 

numbers are stored using scientific notation.  

± Mantissa*2
exponent 

We can represent single precision floating point numbers 

with three binary terms: 

1] Sign bit s: 1 bit. 

2] Exponent field E‟: 8 bits. 

3] Fraction field f: 23 bits. 

E‟=E+127.     0 ≤   E‟ ≤   255. 

1) The actual exponent E IS IN THE RANGE OF -126 

≤ E≤127 

2) The basic aspects of working with floating point 

numbers are two: 

1. If number is not normalized, it can normalized by 

shifting the fraction and adjusting the exponent. 

         (a) Un-normalized value: 

0                                              10001000 00101100000000000000000 

T 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VII, Issue III, March 2018 | ISSN 2278-2540 

 

www.ijltemas.in Page 212 
 

There is no implicit 1 to the left of the binary point. 

          Value represented=+0.0010110000….*2
9 

 (b) Normalized value: 

0 10000101 01100000000000000000000 

Value represented=+1.011000000….*2
6 

The scale factor is in the form of 2
i
. Shifting the mantissa 

right by one bit position is rewarded by an increase of 1 in 

exponent. Shifting the mantissa left by one bit position is 

rewarded by a decrease of 1 in exponent.
 

2. When computations precede, a number that does not fall in 

the required range. In single precision floating point numbers 

normalized representation requires an exponent less than -126 

or greater than +127. In first case underflow has occurred. In 

second case overflow has occurred. Both are arithmetic 

exceptions. 

3.1.1    Exceptions: 

The IEEE standard defines 5 types of exceptions that occurred 

when flag bit sets. 

3.1.1.1 Invalid Operation 

All exponent bits values are „1‟ and all the mantissa 

bits are equal to „0‟, then it represents infinity. If all exponent 

bits values are „1‟ and all the mantissa bits are not equal to 

„0‟, and then it represents Not a Number (NaN). The result of 

invalid operation is NaN (Not a number). 

3.1.1.2 Division by zero 

If divisor is zero in ordinary arithmetic there is no 

meaning for this expression. In computer language integer 

division by zero may cause a program to terminate and if 

floating point numbers may cause NaN (Not a number) value. 

Division by zero results infinity and the multiplication of two 

numbers also results infinity. Therefore to differentiate 

between the two cases, a divide by zero exception was 

implemented. 

3.1.1.3 Underflow and overflow  

In two cases underflow exception occurs: tininess 

and loss of accuracy. Tininess is detected after or before 

rounding when a result lies between ±2Emin. Loss of 

accuracy is detected when the result is when a 

renormalizations loss occurs. The underflow exception occurs 

whenever tininess is detected after rounding and at the same 

time result is inexact. The overflow exception occurs 

whenever the result exceeds the maximum value. It is not 

occurred when one operand is infinity, because infinity is 

always exact. 

The sign bit is 0 for positive numbers and 1 for 

negative numbers. The field f contains a binary fraction. The 

actual mantissa of floating point value is (1+f). For example if 

f is 01110111…, the mantissa become 1.01110111…There 

are many ways to write a number in scientific notation, but 

there is always a unique normalized representation, with 

exactly one non-zero digit to the left of the point. 

0.456*10
3
=4.56*10

2
=45.6*10

1
 

A side effect is that we get a little more precision for given 

number. There are 24-bits in mantissa, but we need to store 

only 23 of them. The exponent field represents the exponent 

as a biased number. It consist actual component plus 127 for 

single precision floating point numbers. This converts all 

single precision exponents from -127 to 127 into unsigned 

numbers from 0 to 254. 

 example shown below for single precision: 

If exponent is 3, the e-field is 3+127=130=100000102 

3.2 The binary representation of IEEE format for single 

precision floating point number: 

The decimal number is -12.375 that is first convert to binary 

form. So the value is 1100.011(2). Normalize the number by 

shifting the binary point until there is a single 1 to the left. 

Shift binary point to left after 3-bits. i.e. 

1100.011*2
0
=1.100011*2

3
 

The exponent is 3. Therefore in biased form it is 

130=10000010. 

The fraction is 100011. 

-12.375 

    1                                             10000010 10001100000000000000000 

3.3 Floating point conversion to IEEE 754 format: 

Ex1: The decimal number is 147.625 

Step1: Convert decimal number to its equivalent binary 

fractional form. 

147.625=10010011.101 

Step2: Normalize the binary fractional number. 

10010011.101=1.0010011101*2
7 

Step3: Convert the exponent to 8-bit excess-127 notation. Add 

127 to exponent and convert it to 8-bit binary number. 

7+127=134=10000110 

Step4: Convert mantissa to buried bit format. 

1.0010011101 0010011101 

Step5: Write down 1+8+23=32 bit binary number. 

147.625=0 10000110 00100111010000000000000 
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3.4 Floating point multiplier block diagram 

 

Fig3.4: Block diagram of floating point multiplier 

The above figure shows block diagram of floating point 

multiplier. It consist mainly five steps: 

Step1: The sign of floating point number n1 and n2 are 

logically XOR together. 

Sign=Sign1 XOR sign2. If both inputs are 0, then output is 0. 

If sign1 is 0 and sign2 is 1, then output is 1. If sign1 is 1 and 

sign2 is 0, then output is 1. If both inputs are 1, then sign 

output is 0. 

Step2: IEEE exponents are stored as 8-bit unsigned integers 

with a bias of 127. Take example 1.10101*2
3
 the exponent is 

3 added to 127 and sum is 130 (100000102).If binary exponent 

is unsigned; it cannot be negative. The largest possible 

exponent is 128. It is added with 127 and sum is 255. This is 

largest unsigned value represented by 8-bits.The range is from 

1.0*2
-127

 to 1.0*2
+128

The exponent is calculated by adding 

both exponent of floating point numbers and the result is 

subtracted from bias (127).   E=E1+E2-127 

Step3: The mantissa is calculated by multiplying both 

mantissa of floating point numbers. 

M=M1*M2. Multiplication is done using any algorithm. 

Those are array multiplier, booth multiplier, parallel 

multiplier, conventional Wallace multiplier, Wallace with 

booth multiplier, dadda multiplier etc. Due to large delay of 

multipliers, different methods have been designed to increase 

speed. The partial products are generated using booth 

algorithm. The partial product bits are added using half adders 

and full adders until two rows get, at finally these rows are 

added using fast carry look ahead adder. Dadda multiplier 

algorithm is faster than remaining all types of multipliers. If 

without booth algorithm multiplication is performed then it 

generates more number of multiplications. It takes more delay 

to execute. Multiplication is a basic and important building 

block in all arithmetic logic units. 

Step4: Normalize the result value if value is un-normalized, so 

that there is a 1 just before the decimal point. Shifting decimal 

point one place to the left increments the exponent by 1, 

Moving one place to right decrement the exponent by 1. For 

example, decimal number is 4566.23 is normalized as 

4.56623*10
3
. Same way the floating point binary value 

1100.100 is normalized as 1.100100*2
3   

by moving the 

decimal point 3 positions to the left and multiplying by 2
3
.In a 

normalized mantissa, the digit 1 always appears to the left of 

the decimal point. The leading 1 is lost from the mantissa in 

the IEEE storage format because it is redundant. Sign, 

exponent and normalized mantissa are grouped into the binary 

IEEE representation. 

Step5: If mantissa bits are more than 5-bits rounding is 

required. If we applied the truncation rounding method then 

the mantissa is 5-bits.At finally product of two floating point 

numbers is getting using IEEE standard.   

3.5 Floating point multiplication algorithm: 

 

Fig3.5a: Flowchart of floating point multiplier 

The following algorithm is used to multiply two floating point 

numbers: 

1).Multiplication (1.M1*1.M2): Its response is multiplying 

the unsigned significant and putting the decimal point in the 

multiplication product. Multiplication is performed on 23-bits. 

Operands x and y are used for multiplication. The floating 

point number x consist of sign bit s_ x, exponent bits e_ x and 

mantissa bits m_ x. The floating point number y consists of 

sign bit s_ y, e_ y and mantissa bits m_ y. 

1. Putting the decimal point in the product. 

2. Adding the exponents (e_ out=e_ x + e_ y –127): Its 

response is to add two floating point number exponents and 

sum is subtracted from bias 127. An 8-bit carry look ahead 

adder is used to add two input exponents. This adder uses 

generate and propagate functions. Gi is referred as the carry 

generate signal. So carry C i+1 is generated whenever Gi =1. Pi 

is referred as the carry propagate signal. When Pi =1, the 

input carry is propagated to the output carry. C i+1=Ci. 

Computing the values of P and G depends on input bits. 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VII, Issue III, March 2018 | ISSN 2278-2540 

 

www.ijltemas.in Page 214 
 

 

Fig3.5b: Block diagram of carry look ahead adder 

 Full adders are used to calculate sum, propagate and 

generate bits. The ai, bi  

 and ci are input bits. Si and Ci+1 are output bits.  

  Pi= ai+ bi                   Gi= ai . bi 

  Si= ai xor bi xor ci  

  Ci+1=Gi + Pi.ci 

  Carry look ahead adder is faster because it generates carry 

bits parallel by an additional   logic circuit when inputs 

change. It uses carry bypass logic ti speed up the carry 

propagation. 

4. Obtaining sign by performing the operation s1 XOR s2.  

 i.e. s_ out=s_ x XOR s_ y. Multiplying one negative number 

and one positive number       results negative number product. 

If both numbers are positive or negative then product is 

positive number. According to logical XOR truth table 

multiplication is performed. When both inputs are 0 or 1, the 

output is 0. When any one of the input is 0 or 1, the output is 

1. 

5. Normalizing the result: The result of the significant 

multiplication is normalized to have a leading 1 to the left of 

the decimal point. If product is 1010.0000100(2) then its 

normalized value is 1.0100000100(2). 

6. Rounding the result to fit in the 32-bits. 

3.5.1   Floating point numbers multiplication examples: 

Ex1:  12.52 * 15.25=190.93 

          12.52                1100.10000101 

          15.25                1111.01000000 

          Normalized value of first number is 

1.10010000101*10
3                     

10010000101 

         Normalized value of second number is 

1.11101000000*10
3              

11101000000 

         Exp1=3+127=130=10000010 

         IEEE format of first number is: 

         0-10000010-10010000101000000000000 

         Exp2=3+127=130=10000010 

         IEEE format of second number is: 

         0-10000010-11101000000000000000000 

         Exp=Exp1+Exp2-127 

                =130+130-127 

         Exp=133 

         Mantissa multiplication:      

                                        

                                       1.10010000101                                  

                                       1.11101000000        

-------------------------------------------------------------- 

                                        000000000000 

                                      000000000000 

                                    000000000000  

                                  000000000000 

                                000000000000 

                              000000000000  

                            110010000101 

                          000000000000 

                        110010000101 

                      110010000101 

                    110010000101 

                  110010000101  

-------------------------------------------------------------                                           

            10.1111101110110001000000 

The normalized value of product is 

1.01111101110110001000000 × 10
1
 

Total exp =product_ exp + exp -127 

               =1+133-127 

Total exp =7 

The product of mantissa of two numbers is 

1.01111101110110001000000. 

Shift decimal point to right after 7 bits. So the   product is     

10111110.1110110001000000(2) =190.93(10) 

      Normalized form of product is  

1.01111101110110001000000*10
7 

=
                        

01111101110110001000000 

Exp=7+127=134=10000110 

Sign of product is 0. 

IEEE form of product is:      

0-10000110-01111101110110001000000 
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IV. BOOTH3 ALGORITHM 

The 16-bit booth 3 multiplication concept is also used for 23-

bit booth 3 multiplication. Multiplier and multiplicand both 

are 23-bits. The multiplier is divided into 8 groups. Each 

group contains 4-bits binary value as shown in figure 4.1a. 

4.1 Multiplication of two binary numbers using booth 3 

algorithm 

 

Fig4.1a: 16-bit booth 3 multiplication 

In each group multiplier 4
th

 bit is checked and if it is 0 then 

sign bit is S. If it is 1 then sign bit is ~S. The partial products 

reduced from 23 to 9 by using boot 3 algorithms. The partial 

product selection table is shown in figure. Each partial 

product is chosen from the set 0, ±M, ±2M, ±3M, ±4M. 

Except 3M all multiples are obtained from shifting and 

complementing of the multiplicand.  

The following steps are used to perform booth3 algorithm: 

1) The multiplication of two 23-bits binary numbers using 

Booth algorithm implies reduction in number of digits to 8 as 

shown below figure 4.1b..  

             
            Fig4.1b: multiplier recoding 

2) The partial products multiplexer selects one operation out 

of nine possible operations depending  on value of the 

corresponding signed bit as shown in figure4.1c.\ 

 

   M 

 ~M 

  2M                                              to Wallace or dadda 

 ~2M                                                     tree To Wallace tree or 

  3M       dadda tree 

 ~3M 

   4M 

 ~4M 

Fig4.1c: Partial product multiplexer 

3) The partial product multiplexer selects M if multiplier 4-

bits binary value is 0001 and ~M is selected when binary 

value of multiplier is 1101. The multiplexer selects 2M when 

binary value of multiplier is 0011. The multiplexer selects 

~2M when binary value of multiplier is 1011. The partial 

product multiplexer selects 3M when binary value of 

multiplier is 0101.  

For ex. The operation of 3M is: 

y23    y22    y21   …. y3    y2     y1     y0       0  ( 2y )  

 y23   y23    y22   …. y4     y3    y2     y1      y0   ( y) 

 ---------------------------------------------------------------z25   z24   

z23   z22 …. z4   z3   z2    z1     z0      (3y)     

4.2   Logic diagram of booth3 partial product generator 

 

 

Fig4.2: 16-bit booth 3 partial product generator logic circuit 

 

MUX 
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The above logic diagram shows booth 3 algorithm. This 

modified booth algorithm is most used method to generate 

partial product. This algorithm generates less partial products 

compare to other techniques by using reduction method. 

Therefore compression speed is enhanced. 2-bit, 3-bit, 4-bit 

recoding is used for this algorithm. The 4-bit recoding means 

that the multiplier B is divided into groups of four bits and the 

algorithm is applied to this group. The booth algorithm is 

implemented into two steps: 

1) Booth decoding 

2) Booth selecting 

        The booth encoding is used to produce one of the four 

values in the multiplier group. 

The booth selecting circuit is used to produce a partial product 

bit k. This algorithm reduces partial products by a factor of 2, 

without adding before to produce the partial products.fig 

shows the dot diagram for a 23 *23 multiplication. The 

multiplier is divided into overlapping groups of 4 bits and 

each group is decoded to select a single partial product as per 

the selection table. Each partial product is shifted 3 bit 

positions with respect to its neighbors. The numbers of partial 

products are reduced from 23 to 9. In general there is (n+2)/2 

partial products, where n is the operand length. Many required 

multiples are obtained by a simple shift of the multiplicand. 

Negative multiples taken in two‟s complement form, which is 

obtained using a bit by bit complement of the corresponding 

positive multiples, with a 1 added at the least significant bit of 

partial product. Booth algorithm also reduces dots in dot 

diagram. In this partial product groups are assigned to a set 

0,M,2M,3M,4M,-0,-M,-2M,-3M,-4M.  

             M is multiplicand value. –M is complement of 

multiplicand value. 2M is circular left shift by 1-bit position. -

2M is circular left shift of complement of multiplicand 1-bit 

position. 3M is (a+2a), that means „a „refers multiplicand and 

2a is circular shift of a. -3M is complement of (a+2a) value. 

4M is circular shift of multiplicand by 2-bit position. -4M is 

complement of 4M value. The number of dots, constants and 

sign are added is 126 for 23*23 multiplier and height of 

partial product is now 9.  

            Generation of the multiple 3M requires adder circuit. It 

cannot be obtained by simple shifting or complementing of 

multiplicand. This increases the complexity of the partial 

product generation. The amount of hardware and delay 

depends upon number of partial products to be added. Booth 

algorithm generates less partial products, so hardware cost is 

less and it improves performance of multiplier. Booth is used 

in multiplier with long operands i.e. greater than 16-bits. 

Booth 2 is fastest algorithm, booth 3 is power efficient and 

booth 4 requires less area. In booth 3 algorithm starting 27 

bits are dots and 28
th

, 29
th

 and 30
th

 bits are sign bits, which are 

S. 31th bit is complement of sign bit, that is ~S. If MP [3] is 0, 

then sign is 0. So it represents S. If MP [3] is 1, then sign is 1. 

So it represents ~S. 

V. PROPOSED ALGORITHMS 

5.1   Floating point multiplication using Wallace algorithm 

        In 1964 C.S.Wallace introduced a Wallace tree 

multiplication algorithm. It includes three steps to multiply 

two numbers. 

Step 1: The partial products are generated using booth 3 

algorithm. Nine partial products are generated. Two 23-bit 

numbers are used as inputs, those are multiplicand and 

multiplier. The multiplier input is divided into 8 groups. Each 

group consists of 4-bit binary value. If 0001 in the group then 

multiplicand value should write as it is. If 0011 in the group 

then 2* multiplicand value should write. Similarly 

±3multiplicand and ±4multiplicand are represented for other 

binary numbers shown in multiplication using booth3 

algorithm table. 

Step 2: In first stage the nine partial products are divided into 

3 levels. In level-1 the full adder (3:2 counter) and half adders 

(2:2 counter) are used for 3-bits and 2-bits respectively. The 

full adder and half adder results sum and carry bits are stored 

in 2
nd

 stage, level-1. In level-1 also same full adder and half 

adders are used, these outputs sum and carry are stored in 

further level. This continues in same way until two rows get.  

Step3: These two rows are added using carry look ahead 

adder. It is faster adder so the delay of multiplication is less. 

Overall the multiplication consist 5 stages.Stage-1 consist of 3 

levels. Stage-2 consists of 2 levels. Stage-3 consists of 1 level. 

Stage-4 consist of 1 level and finally stage-5 also consist of 1 

level i.e. using CLA the addition is performed. Two CLA‟s 

are used to perform addition and to get product output. At 

finally we get product of two numbers. Single precision 32-bit 

floating point multiplication of two numbers consists of 1-bit 

sign, 8-bits exponent and 23-bits mantissa. The 23-bit two 

floating point numbers mantissa are multiplied using above 

Wallace technique. The sign bit of first number and sign bit of 

second numbers are XOR to get sign bit multiplication. When 

both are 0 or 1, the output is 0. When any one output is 0 or 1, 

the output is 1. Exponent is calculated using propagate and 

generate function. Using carry look ahead adder the 8-bits of 

exponent are added. The difference between Wallace tree 

multiplier and column compression multiplier is that, in 

Wallace tree each possible bit in each column is covered by 

3:2 counter and 2:2 counter, until finally the partial product 

has two rows. This algorithm consists of 5 stages. 
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Fig 5.1: Dot diagram of 23-bit Wallace multiplier. 

Stage-1: It consists of 3 levels as shown in figure5.1. The 

level-1 of stage-1 performs 36 full adders‟ functions. MP [0] 

is 0
th

 bit of multiplier. It is always 0, because when grouping 

the multiplier which contains 4 bits in each group we should 

add 1 zero to multiplier. If MP [3] is 0, the sign  

bit is 0 and it is represented as S. If MP [3] is 1, the sign bit is 

1 and it is represented as ~S. Nine partial products are 

produced using booth algorithm. These partial products are 

divided in to 3 levels. The level-2 consists of 39 full adders 

and level-3 consists of 35 full adders. The sum and carry 

outputs of level-1 of stage-1 are stored in level-1 of stage-2. 

Stage-2: Level-1 consists of 6 half adders and 30 full adders. 

Level-2 of stage-1 sum and carry output bits are stored in this 

stage-2.This continues until two rows get. The level-2 consists 

of 5 half adders and 30 full adders. 

Stage3: It consists of 12 half adders and 31 full adders. Two 

dots are used for half adder operation and three dots are used 

for full adder operation. 

Stage4: It consists of 18 half adders and 30 full adders. 

Stage5: Two CLA‟S are used to add last two rows of Wallace 

algorithm.CLA1 add sum bits from S226 to S248 with carry 

bits from C225 to C247. CLA2 add sum bits from S249 to 

S271 with carry bits from C248 to C270. Two half adders are 

used at beginning and end of stage-5. At finally we get 

product of two binary numbers. Product is assigned from S0, 

S110, S181, S224, and S272 to S321. 

Totally Wallace multiplier uses: 

1)  Full adders=231.                 

2) Half adders=43.                 

3) CLA=2.       

Wallace multiplier require more number of full adders, half 

adders compare to Dadda multiplier. So Wallace is more 

complex to design but Dadda multiplier is easy to design the 

single precision floating point multiplier. Wallace multiplier 

requires more wires compare to Dadda multiplier. Carry look 

ahead adders are used to improve the speed of the design. 

These are faster adders compare to all other adders because 

they uses carry generate and propagate functions. The dot 

diagram of Wallace multiplier is explained above clearly. 

Stage levels are reduced as stage number increase. Final stage 

is carry look ahead adder, from that result product of two 

numbers will get. 

5.2 Floating point multiplication using Dadda algorithm 

Dadda multiplier developed Wallace‟s multiplier by defining 

a few counters in partial product reduction stage using carry 

look ahead adder. Dadda uses many ways to compress the 

partial product bits using 3:2 and 2:2 counters. Fig shows the 

process of 23*23 bits dot diagram for dadda multiplier. Each 

dot represents a bit. In first step columns having more than six 

dots are reduced to 6 dots, next reduced to 4 dots, next 

reduced to 3 dots and at final dots are reduced to 2 dots in a 

column. These two rows are added using carry look ahead 

adder. Each half adder uses two dots, outputs one in the same 

column and one in the next more significant column and each 

full adder uses three dots, outputs one in same column and 

one in the next more significant column so that no column in 

step 1 will have more than 6 dots. 

          In each case the rightmost dot of the pair that is 

connected by a line is in the column from which the inputs 

were taken from the adder. In next step reduction is no more 

than 4 dots per column, further no more than three dots per 

column, at last no more than two dots per column is 

performed. The height of the matrices is obtained by 

functioning back from the final two row matrix and restricting 

the height of the each matrix to the largest integer that is no 

more than 1.5 times the height of its successor. Each matrix is 

produced from its predecessor in one adder delay. Since the 

number of bits in the words to be multiplied, the delay of the 

matrix reduction process that reduces is proportional to log n, 

where n is word size. Final two row matrix can be 

implemented as a carry look ahead adder and total delay for 

this multiplier is proportional to the logarithm of the word size 

n.   

5.2.1   Partitioning the partial products: 

           Partial products are divided into two parts: part-o and 

part-1. In which part-0 and part-1 consists of n columns. The 

two parts are separately performed and finally added both 

result together. The partial products of each part are reduced 

to two rows by the using 3:2 counter and 2:2 counters by 

referring dadda algorithm. The grouping of 3 dots and 2 dots 

in same column refers to 3:2 and 2:2 counters respectively. S 

and C denote partial sum and partial carry bits. 
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Part-0: (Stage-1):In stage-1 nine partial products are divided 

into 3 levels as shown in figure5.2.1a. The partial products are 

generated using booth 3 algorithm. MP [0] is always 0 

because when grouping the multiplier bit 0 is replaced with 

zero. Ex: Multiplier is 10010110110100010 

 

Fig5.2.1a: Dot diagram of 23-bit Dadda multiplier. 

By using logic diagram the 9 partial product generation 

equation is wrote: 

 

0  1  0  0  1  0  1  1  0  1  1  0  1  0  0  0  1  0  0 

  

                                        Extra bit 0 {MP [0]}                                                 

Using FOR loop partial products are generated. In each 

group if MP [3] is 0, then sign bit is 0 and it is noted to S. If 

MP [3] is 1, then sign bit is 1 and it bits noted as ~S. That 

means complement of S is calculated. In level-1 one half 

adder functions is performed and 15 full adders are 

performed. In level-2 one half adder and 12 full adders are 

used. In level-3 one half adder and 10 full adders are used.  

Stage-2: S0, S1……..S15 bits are stored in level-1 of stage-2. 

The generated carry output bits are written in next column by 

one bit shift. The c0 is carried to next column where it is to be 

added up with sum s1 of a 3:2 counter. The carry c1 of 3:2 

counter is added to next column. Stage-2 full adders and half 

adders outputs sums and carries are stored in next column in 

level-1 and level-2. The output sums S16 to S28 are added to 

previous sums and carries in level-1. Totally 21 full adders 

and 1 half adder used in this level. In level-2 of stage-2 18 full 

adders and 1 half adder and another 1 half adder are used to 

perform addition. 

Stage-3: It consists 1 half adder and 25 full adders. The 

addition is used same process. 

Stage-4: It consists of 2 half adder and 28 full adders. The bits 

C62 and C107 are added using half adders. The process is 

continues until two rows to get. 

Stage-5: The two CLA‟S CLA1 and CLA2 and 5 half adders 

are used to add the input bits.CLA is faster than other adders. 

It uses carry propagate and generate functions. The starting 

bits addition is performed using half adder. Four half adders 

are used at beginning. Next S109 to S137 and C108 to C136 

bits are added using two CLA‟S. At last using one half adder 

for C137 and C172 the last sum bit S173 is getting. Also it 

generates carry bit C173.Finally S138 to S173 are result sum 

bits of part-0 in dadda algorithm. 

C139 to C174 are result carry bits of part-0 in dadda 

algorithm. 

 

Fig5.2.1b: Dot diagram of 23-bit Dadda multiplier. 

Part-1: (Stage-1): 

The partial products are shifted upward to make a not more 

than 6 bits in first step as shown in figure5.2.1b. The satge-1 
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consists of two levels. In level-1 half adders are 2 and full 

adders are 6. P4 [38] and P5 [38] bits are added using half 

adder. The starting bit is 31
st
 bit. The partial product 31

st
 to 

50
th

 bits are considered for calculation. P2 [31], P3 [31] and 

P4 [31] bits are added using full adders. In this full adder „a‟ 

is treated as P2 [31], „b‟ is treated as P3 [31] and „Cin‟ is 

treated as P4 [31]. In level-2 4 half adders are used. 

Stage-2: It consists of two levels.Level-1 consists of 2 half 

adders and 12 full adders. The sums of level-1 of stage-1 are 

stored in level-1 of stage-2. In that level next column consists 

of carry bits of level-1 of stage-1. In level-2, 3 half adders and 

7 full adders are used. The sum and carry output bits of 

previous stage bits are added using half adders and full adders 

in next stage. 

Stage-3: It consists of 3 half adders and 14 full adders. The 

partial products P [7] and P[8] bits are added together. 

Stage-4: It consists of 2 half adders and 17 full adders. The 

partial products P [8] and P[9] bits are added together in 

stage-4. 

Stage-5: One CLA is used to perform addition of sum bits 

from S228 to S245 and carry bits from C227 to C244. 

Another 2 half adders are used at beginning bits and end bits. 

At finally we get part-1 output of dadda multiplier. The result 

sum bits are from S246 to S266 and carry bits are from C247 

to C267. At last the product of two binary numbers will get by 

adding part-0 output and part-1 output. From S138 to S169 

are directly assigned to output and next 1 half adder and 2 full 

adders are used. At last 18 half adders are used to get final 

product. 

Totally dadda multiplier uses: 

1) Full adders=187.            

2) Half adders=55.           

3) CLA=3.  

VII. SIMULATIONS AND RESULTS 

The single precision floating point multiplier using 

Wallace algorithm and dadda algorithms are designed using 

Xilinx ISE 14.2 design suit and have been synthesized with 

XC5VLX110T of Virtex-5 as the target device. Proposed 

algorithm achieves from writing Verilog code. The delay of 

single precision floating point multiplier using Wallace 

algorithm is compared with delay of single precision floating 

point multiplier using dadda algorithm. This chapter mainly 

discusses the simulation results of floating point multiplier 

using Wallace and dadda algorithm and analysis of 

performance goals. 

7.1 Exponent multiplication of two floating point numbers: 

The two numbers are: 16.25 × -23.75 

1) 16.25 =10000.01 =1.000001 × 10
4
 

           exp1=4+127=131=10000011 

2) 23.75 =10111.11 =1.011111 × 10
4
 

exp2=4+127=131=10000011 

Inputs: 

16.15          0   10000011   

00000100000000000000000 

23.75          1   10000011   

01111100000000000000000 

Sign=sign1 XOR sign2 

       =0 XOR 1 =1 

  

 

exp =exp1+exp2-127 

      =131+131-127  

   

Mantissa M=11.00000011111 = 1.100000011111 

expf =135+1=136 

Final exp is 136-127 = 9 

M = 1100000011.1112 = 385.937510 

          

 

 

Fig7.1: Two floating point number exponent multiplication output 

The product exponent is calculated by adding two floating 

point number exponents and addition result is subtracted from 

bias 127. 

Sign=1 

exp =135=10000111 

Product = 1   10000111   

10000001111100000000000 
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exp1=100000112=13110 

exp2=100000112=13110 

exp =exp1+exp2-127 

      =131+131-127=13510=100001112 

The single precision floating point representation consist 8-bit 

exponent. The exponent field represents the exponent as a 

biased number. It contains the actual exponent plus 127 for 

single precision. This converts all single precision exponents 

from -127 to 127 into unsigned numbers from 0 to 254. The 

resultant exponent is calculated using generate and propagate 

functions in verilog code.  

7.2 Generation of partial products using booth3 algorithm:  

 

Fig7.2: Partial products output 

The variables amp and amc are multiplier and 

multiplicand binary values. Those are 23-bits wide. As 

explained in chapter 4 each partial product is chosen from the 

set 0, ±M, ±2M, ±3M, ±4M. Except 3M all multiples are 

obtained from shifting and complementing of the 

multiplicand. Using partial product generation table for 23-bit 

mantissa nine partial products are generated. 

The partial products are assigned as pp1, pp2, pp3, 

pp4, pp5, pp6, pp7, pp8, pp9. Many intermediate wires and 

registers are used to calculate partial products. FOR loop is 

used to generate each partial product. To calculate 3M the 2M 

is added with M. The partial product generation equation is 

written using XOR, AND, OR and NOT basic logic gate 

expressions. Without booth algorithm 23 partial products are 

generating but using booth algorithm only 9 partial products 

are generating. 

7.3 Using Wallace algorithm floating point multiplier output: 

 

Fig7.3: The output of floating point multiplier using Wallace algorithm 

The variables „a‟ and „b‟ are 32-bit inputs. These two 

floating point numbers are represented in IEEE 754 format. 

The verilog code is written in structural mode.  

a = 01000001100000100000000000000000 

b = 11000001101111100000000000000000 

These two floating point numbers are multiplied and output 

product is generated. 

Pro = 110000111100000011111000000000 

Exponent calculation is above explained and sign bit 

calculation is performed using logical XOR function. Floating 

point multiplication using Wallace algorithm uses more 

number of full adders and half adders compare to dadda 

algorithm floating point multiplication. 

7.4 Using Dadda algorithm floating point multiplier output: 

 

Fig7.4: The output of floating point multiplier using Dadda algorithm 
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Dadda algorithm floating point multiplication uses 

same steps like Wallace algorithm but mantissa multiplication 

is different.Booth3 algorithm generates 9 partial products. The 

same partial product generation code is used for both Wallace 

and dadda algorithms. In dadda algorithm the partial products 

are divided in to 2 parts.  

Part-0 and part-1 operations are separately performed 

and finally these results are added together to get final product. 

Dadda algorithm uses less full adders and half adders compare 

to Wallace algorithm. Therefore it is faster than floating point 

multiplier using Wallace algorithm. Mantissa1 and mantissa2 

are 23-bit wide. The product is also IEEE754format. We can 

convert that to decimal point number. 

7.5 Device Utilization Summary 

Common components such as flip-flops, LUTs, 

block RAM and multiplexers make up the basic logic 

structures on a Virtex-5. A collection of these basic structures 

is called as slice or Configurable Logic Block (CLB). The 

numbers of slice registers used are 253 and number of slice 

LUTs are 958 in floating point multiplier using Wallace 

algorithm. Information about map report and device 

utilization will give whether design fits into the device or not. 

 

Table7.5a: Design summary of floating point multiplier using Wallace 
algorithm. 

Table7.5a and 7.5b shows the slice utilization for floating 

point multiplication using Wallace and Dadda algorithm. As 

shown in the table, both Wallace and Dadda algorithm 

multiplication use 2% of the slice registers, LUTs, logics and 

slices. Information about map report and device utilization 

will give whether design fits into the device or not. As 

proposed design uses 2% of the available resources, one can 

tell that design fits into the Virtex-5. 

 

 

Table7.5b: Design summary of floating point multiplier using dadda algorithm. 

7.4.2 Timing Summary 

       The proposed solution processes data at a rate of 8 bytes 

per cycle at 47.083MHz. Clock frequency is used to calculate 

throughput. Timing summary provides statistics on average 

routing delays and performance versus constraints. 

 Timing summary for floating point multiplier using 

Wallace algorithm: 

           Speed grade:-2 

           Minimum period: 21.239ns 

           Minimum input arrival time before clock: 4.20ns 

           Maximum output required time after clock: 2.826ns 

           Maximum combinational path delay: No path found 

 Timing summary for floating point multiplier using Dadda 

algorithm: 

Speed grade:-2 

Minimum period: 20.797ns 

Minimum input arrival time before cloc4.200ns 

Maximum output required time after clock: 2.826ns 

Maximum combinational path delay: No path found 

VIII. ADVANTAGES DISADVANTAGES AND 

APPLICATIONS: 

8.1 Advantages: 

1. Floating point multiplier using Wallace and dadda 

algorithm designs presented here are very lean and 

require less resource when implemented on Virtex-5. 
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2. Wallace and dadda multiplier algorithms have less 

delay. 

3. The number of logic levels required to perform the 

summation is reduced in Wallace and dadda 

algorithm compare to other multiplier algorithm 

techniques. 

4. Wallace and dadda multipliers algorithms are faster 

because to generate less partial products these are 

adopt booth3 algorithm. It uses smaller area and low 

power dissipation. 

5. In both Wallace and dadda algorithm carry look 

ahead adders are used instead of carry select adders or 

ripple carry adders, so carry look ahead adder is one 

of the fastest adder and having more advantages 

among all the available adders. 

8.2 Disadvantages: 

 Wallace and dadda algorithms are complex to layout 

in VLSI design and have irregular wires. 

8.3 Applications: 

1. High Speed Signal Processing that includes DSP 

based applications. 

2. DWT and DCT transforms used for image and wide 

signal processing. 

3. FIR and IIR Filters for high speed, low power 

filtering applications. 

4. Multi-rate signal processing applications such as 

digital down converts and up converters 

IX. CONCLUSION 

In the proposed work design of floating point 

multiplier using Wallace and Dadda algorithm with carry look 

ahead adder on FPGA is presented that is used for DSP 

applications. Modified booth3 algorithm is used to design fast 

multiplier. So floating point multiplier using Dadda algorithm 

with carry look ahead adder is faster than floating point 

multiplier using Wallace algorithm with carry look ahead 

adder. Inherently parallel design of algorithm allows an 

efficient hardware implementation. Dadda multiplier has 

smaller delay. The simulations and synthesis results of 

modules are provided. 

IEEE 754 standard based floating point 

representation has been used. The unit has been coded in 

Verilog and has been synthesized. Carry look ahead adder is 

used in the design of final stage adder of Wallace and dadda 

tree used for mantissa multiplication and in the exponent 

addition. The dadda multiplier has less number of reduction 

stages and levels compared to other multiplier techniques.  

          Algorithms are designed using Xilinx ISE 14.2 design 

tool and implemented on Virtex-5. Synthesis report shows that 

proposed design achieves area and performance goals.  

Comparison of synthesis report of floating point Wallace & 

Dadda multipliers using carry look ahead adder: 
 

Table8.1 Delay comparison of Wallace and Dadda floating point multiplier 

X. FUTURE SCOPE 

The designed floating point unit operates on 32-it 

operands. It can also design for 64-bit operands to enhance 

precision. It can be extended to have more mathematical 

operations like addition, subtraction, division, square root, 

trigonometric, logarithmic and exponential functions. In 

future implementing higher compressors for Wallace tree and 

Dadda tree used for mantissa multiplication can further 

increase the efficiency of the floating point multiplier in terms 

of speed.  

A few researchers have shown that there is a 

considerable improvement in the delay by using higher order 

6:2, 7:2, 9:2 compressors for Wallace tree but no paper for 

Dadda tree. Exceptions like overflow, underflow, inexact, 

division by zero, infinity, NAN etc are incorporated in the 

floating point multiplier. 
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