
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue IV, April 2018 | ISSN 2278-2540

www.ijltemas.in Page 129

 Host Based Intrusion Detection System for Log Files
Surjit Singh

1
, Shatruanjay Kumar

2
, Sachin Yadav

3
, Sushma Shirke

4

4
Professor,

1-3
B.E Students

Department of Computer Engineering, Army Institute of Technology, Pune, Maharashtra, India

Abstract-- World over the internet has become less secure and

computer security is the major issue today. Many possible

solutions are available today and intrusion detection system is

one of them to handle this issue. Intrusion Detection systems uses

pattern matching algorithm as the core algorithm for its

functioning. Intrusion Detection pattern matching technique had

applied on the Security Event log files for the Windows/Linux

system. Matching of the intrusion pattern had indicated the

intrusion in the system. Existing signature based IDS have

noteworthy overheads in terms of execution time due to the

pattern matching operation. This project aims to speed up the

pattern matching operation through parallelizing a matching

algorithm on a multi-core CPU. In this paper, Myer algorithm

had paralleled on a multicore CPU under the Map Reduce

framework. On average, we attained four times speedup using

our multi-core implementation as compared other serial

algorithms. The system is hoping to grow into HIDS that will

capture all kind of intrusions in future.

Keywords- Host based intrusion detection system; pattern

matching; Linux/Windows; System logs; Map Reduce.

I. INTRODUCTION

omputer security is becoming an area of utmost

importance due to the rapid increase number of people

who use computers. As more and more computer systems are

setup, there are certainly bugs in these systems which

attackers attempt to exploit. Host Intrusion detection systems

(HIDS) are designed to monitor a computer internals to detect

and prevent against malicious activity. HIDS can monitor

users, applications, networks or combination of the all above

from well-known and unknown attacks by analyzing its

security log files and network interface for incoming packets.

The two main methodologies to host intrusion detections are

misuse detection and anomaly detection.

Misuse detection attempts to model well-known attacks. Then

any behavior or pattern that matches the model is identified as

an attack. It is a Signature-based detection method where the

predefined rules or user defined rules are used to identify the

intrusion. The rules will determine pattern of the security logs

that need to be detected. If the security logs patterns matches

with the defined pattern, the Intrusion has occurred. The

collection of these signatures composes a knowledge database

that use by the HIDS to compare all log options that pass by

and check if they match a known pattern [1]. Misuse detection

techniques in general is ineffective against novel attacks that

have no matched rules or patterns yet [2]. The advantage of

this approach is well-known type of attacks can be identified

by this matching technique. The drawback is, it is difficult to

detect a new attack pattern or modified attacks which may by

pass the system.

Second approach is Anomaly based detection method where

the system will learn the normal and anomaly packet traffic

and it detects intrusion on modified attack or unknown attack.

This approach requires some artificial intelligence’s element

where the system can learn the normal pattern of the packet

traffic on the interface and make detection on intrusion if the

behavior of the packet is changed. The advantage of this

approach is, it can be used to detect unknown attacks. The

drawback of this approach is, it is slow in detecting intrusion.

The intrusion may have occurred number of times or continue

to occur after the IDS detect the intrusion. The second

drawback of this model is that network has produced all types

of behavior in learning phase of the HIDS that hides from the

user, so it may cause a high number of false-positive alerts.

The two different approaches to intrusion detection are Host-

based intrusion detection (HIDS), and Network based

intrusion detection (NIDS). HIDS attempts to detect against

attacks on a particular machine system. This is typically done

through analysis of a computer’s internal. Network-based

intrusion detection attempts to detect against attacks on a

network. This is typically done through analysis of network

traffic. There are few types of IDS such as Network IDS,

Host-based IDS, Protocol-based IDS, and Application

Protocol-based IDS. This study is focused in development of

Host-based IDS. Host-based IDS is a type of IDS that is

allocated on a particular host on the network. Its major benefit

is the detection of intrusion to intended host or local host.

Host- based IDS provide an extra protection to the host where

it monitor more aspect of host such as monitoring file system

integrity, host access, network packet that send to the host,

system registry and system security log files. Where log file of

host system are analyzed from time to time to detect intrusion.

The content of the log file is compared to IDS rules or pattern

that is predefined in database created.

File system monitor can check files on a large number of

different characteristics such as permissions, anode, and

number of links, owner/group, size, directory size, checksum,

type, link, and active changing [3].

II. BACKGROUND

This section provides the necessary background to under-

stand the problem in hand. Sections 2.1 introduces Myers

C

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue IV, April 2018 | ISSN 2278-2540

www.ijltemas.in Page 130

algorithm and dynamic programming. Section 2.2 briefly

reviews the related parallel programming techniques, and

Section 2.3 presents the Map Reduce framework and the two

different implementations.

2.1 Myers algorithm

The Myers algorithm is an approximate string matching

algorithm. An approximate matching algorithm matches a

large text of length n with a short pattern p of length m

allowing up to k differences, where k is a chosen threshold

error. The Myers algorithm relies on a simple dynamic

programming (DP) concept. It uses recursive formulas and

simple bit operations to compute the edit distance between the

text and patterns to find the equalities or differences [4]. The

edit distance between two strings is expressed as the minimum

edit operations required to transform a text t1 to another text

t2 or vice versa. Commonly, there are three typical variations

of edit distance. The first form is called the Hamming distance

[5]. It computes the number of positions in the text that has

different characters, i.e., how many characters are needed to

convert a text t1 to another text t2. The compared texts or

strings must be of the same length. The second form is called

the Levenshtein distance, which does not have any restriction

over the text size [6]. The edit distance is the minimum

number of edit operations: insertion, deletion, and

substitution, which are needed to convert two strings into each

other. The third one is the Damerau edit distance. It allows the

transposition of two adjacent characters to complete the

conversion between the two strings [7]. Figure 2 shows

examples of the edit operations.

The Myers algorithm uses the Levenshtein distance to

compute the matches. It considers two strings similar if the

edit distance (ed) between the two strings (A, B) is less than

or equal to a predefined threshold (k) (ed (A,B)<=k).

The formal approach to solve the problem of approximate

string matching and to find the minimum edit distance is to

use dynamic programming. Dynamic programming is an

approach which uses a recursive formula to compute new

values based on a prior knowledge of previous values. For two

strings of lengths m and n, a matrix of size m × n is filled

column-wise or row-wise, respectively, with distances

between the strings. The patterns are arranged vertically and

the logs are arranged horizontally.

Initially, the matrix cells are initialized as follows. Cells C[0,j]

= 0 and cells C[i,0] = i, and next, the matrix is expanded

according to the recursive formulas in Eq. Given below [8].

Each cell of the matrix, C[i,j], represents the edit distance

between the two strings P[1 →i], T[1 →j] ending at positions

i,j. The addition of one in Eq. 1 is the penalty if a match does

not exist. This case represents a substitution.

2.2 Parallel programming

Parallel programming is a technique in which many

computations are performed concurrently. Parallel

computation divides a big task into smaller sub-tasks to be

executed simultaneously. Parallelism can utilize multi-core

processors in a single machine or multi-processors in a cluster

of machines.

The parallel execution on a multi-core or a cluster can take

many forms. It can be categorized into bit-parallelism, data

parallelism, or task/function parallelism. The focus of bit-

parallelism is to minimize the count of instructions to execute

an operation. This can be done by increasing the processor

word size. In data parallelism, the data is split into many

pieces and is distributed to multiple cores or processes. All

processors run the same code simultaneously but on different

data piece. This is also known as single instruction multiple

data (SIMD) approach. In contrast to data parallelism, task

parallelism is a form of parallelism where multi-processors

run different codes or tasks on the same piece of data

simultaneously.

2.3 Map Reduce

Map Reduce is a programming model released by Google to

handle the processing of large dataset in parallel. The idea

behind this framework is to hide the complexity of parallelism

from the programmer. Moreover, the framework provides the

programmer with a simple API to present the logical

perspective of an application.

Recently, Map Reduce has been widely used in both academia

and industry. Map Reduce has become a standard computing

platform used by large companies such a Google, Yahoo!,

Facebook, and Amazon. Statistics show that Google uses Map

Reduce framework to process more than 20 petabytes of data

per day.

https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-017-0062-7#Fig2
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-017-0062-7#Equ1

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue IV, April 2018 | ISSN 2278-2540

www.ijltemas.in Page 131

2.3.1 Map Reduce basic programming model

Map Reduce framework consists of two primitive functions

defined by the user: Map and Reduce. Additionally, it has a

runtime library to automatically manage the parallel

computations without the need for user interventions. The

library handles data parallelization, fault tolerance, and load

balancing.

In Map Reduce model, the input and output data take the form

of key/value pairs <key,value>. Map and Reduce are the main

two operations that are applied to the key/value pairs. A large

input data is split into chunks of a specified size. For example,

Google’s implementation partition the data into M pieces each

of size 16–64 MB. The Map function takes the input as a

series of key/value pairs <k1,v1> and performs the task

assigned by the programmer. The output of the Map function

is a series of intermediate key/value pairs <k2,v2>.

The framework performs a shuffle phase in order to group the

values of the same key. Afterwards, the intermediate data

pairs are sent to the appropriate Reduce function. The Reduce

phase takes the combined intermediate values as a key and a

list of values and then executes the user-defined Reduce

function to produce the final result.

2.3.2 Phoenix Map Reduce

Phoenix is a Map Reduce implementation introduced by

Stanford University [9]. It targets multi-core and multi-

processor systems. Phoenix relies on the same principles of

the original Map Reduce implementation. It provides a

runtime system library and a set of APIs that handle the

underlying parallelism issues automatically. Unlike Google’s

Map Reduce, Phoenix uses threads instead of clusters to

perform the Map and Reduce tasks. Additionally, it uses

shared memory for the purposes of communication.

Phoenix provides two distinct types of APIs: the first set is

defined by the user such as Map, Reduce, and Partition. The

second set includes the runtime APIs that deal with system

initialization and emitting of the intermediate and final output

as key/value pairs. Pthreads library is the basic development

package of Phoenix runtime. The execution flow of the

runtime passes through four basic stages: Split, Map, Reduce,

and Merge. At the beginning, the user program initiates a

scheduler that controls the creation of Map and Reduce

threads. A buffer is used to provide the communication

between workers. Data and function arguments, such as the

number of workers, the input size, and the function pointers,

are passed to the schedule. The Map phase splits the input

pairs into equal chunks and provides a pointer for each data

chunk to be processed by the mappers. The intermediate data

that is generated by the mapper is partitioned into units as well

and ordered by the partition function to be ready for the

reduce phase. The reduce phase does not start until the entire

Map task is finished.

The scheduler assigns the tasks to the reducer dynamically.

Each unique key with its associated list of values is processed

at a reducer node or thread. At the end, the final outputs of the

tasks are merged into a buffer and sent back to user program.

2.3.3 MAPCG Map Reduce

Nowadays, hardware accelerators are being widely used to

perform general-purpose computations. Some researchers

have implemented Map Reduce on hardware accelerators such

as FPGAs and GPUs [10].

These implementations try to exploit the parallelism

capabilities of the accelerators to improve the execution time

of the Map Reduce framework. GPUs have received a great

attention due to their high performance capabilities.

MAPCG framework relies on the accelerators context that

says "Write once, run anywhere". It was designed to provide a

portable source code between CPU and GPU using Map

Reduce framework [11]. MAPCG’s runtime library allows the

user to focus on the logical perspective of the algorithm

implementation rather than dealing with the side-burdens of

parallelism such as load balancing and communication issues.

In short, MAPCG was designed to parallelize data-intensive

applications on multi-core CPUs and GPUs. It automatically

generates a portable code that can schedule the Map Reduce

tasks on both CPU and GPU. In addition, it implements a

dynamic memory allocator for the CPU and GPU that behaves

efficiently even when using a massive number of threads.

Moreover, a hash table was designed to group the

intermediate data on GPUs to enhance the sorting phase of

Map Reduce keys. Basically, MAPCG has two main parts, a

high-level programming language and the runtime library.

The high-level language facilitates and unifies the

programming task, while the runtime is responsible of

executing the code on different processing units such as the

CPU or GPU. As other Map Reduce frameworks, the

execution begins by splitting the data inputs into chunks and

sending them to the Map phase. The function Map is applied

to each data chunk and outputs the intermediate data. The

Reduce function performs the appropriate computations on the

intermediate data to produce the final outputs.

III. IMPLEMENTATION

The focus for this HIDS is to make it detect intrusion through

security log file that provided by operating system. Therefore,

this section will discuss about the implementation and result

for this study. Actually, it is about its processes. The

Processing Units perform the task of capturing the newly

logged event which is the initiating step of the entire process.

The signatures are created and stored in database. After the

generation of signatures logs files were analyzed by using

Myer’s pattern matching technique.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue IV, April 2018 | ISSN 2278-2540

www.ijltemas.in Page 132

3.1 Creating User Signatures

For well-known attacks User signatures are already present

and can be stored in database, but for some other attacks

signatures are not available. So for such attacks, User

signatures are created from the log files generated by the

Basic Security Module (BSM) of the operating system. The

BSM is a kernel module that logs all events that occur on a

given machine. Each of these events is actually a system call,

and for each system call a record is generated, consisting of

tokens corresponding to the type of event. All the system calls

that are generated by the user are extracted from log files and

then commands are extracted from it. For doing this the UNIX

utility commands are used, audit reduce and praudit. The audit

reduce command is used for audit management and record

selection, while praudit is used to convert binary log files in to

ASCII format. At the command prompt, this is done as

follows:

“auditreduce -u [username] [log file in binary form] | praudit –

l”.

The audit reduce command takes the log file specified and

extracts all system calls generated from the given username.

The output of this is piped to the praudit command, which will

then write each record (system call) to std output one record

per line.

3.2 Pattern matching

In order to find the suspicious logs, most of Host IDSs employ

a pattern matching algorithm. The algorithm checks the

presence of a signature in the security logs and outputs the

location of the security log. The algorithm must be fast

enough to detect the malicious behavior, and it must be

scalable in order to meet the increase in both the number of

signatures and the link speed.

String matching algorithms can be categorized into single and

multiple pattern matching algorithms. In the single pattern

matching, one pattern is matched against the entire text at a

time. In contrast, the multiple pattern matching approach

compares the text sequence against all signatures all at once

[12]. Obviously, the multiple matching approach is a better

choice for intrusion detection to avoid sweeping the packet

many times. However, it consumes more memory and

requires a pre-processing phase to program the patterns before

matching can commence. The Myers algorithm is a better

approach for this.

3.3 Logging and Monitoring

Logging and Monitoring gives corresponding responses for

verified intrusion behaviors, including static measures, for

example, record attack data, store captured data, send emails

and messages to the manager, it can also take some active

dynamic preventive measures, cut off the intruded connection

and modify the access control of router, for instance. It mainly

includes patrol agent and host mobile agent two types. The

former is to carry out host behavior detection and response,

and the latter is mainly to respond to the invasion information

in the intrusion detection module and report the invasion logs

to the control server, as well as store in the database. The

system is only to achieve log storage, and the database storage

will be achieved until the system expansion and improvement.

Generally, the system mainly includes three very important

functions , namely Alert () function is to give real-time

warning of intrusion behaviors, logtoTable() is to set up a log

of high danger class intrusion behaviors in database and Trace

Intrusion is to trace and take evidence of intrusion behaviors if

it proves necessary.

IV. CONCLUSION

This paper is developed about a Host based intrusion detection

system for security log files, which is able to detect malicious

activity and show an alert of intrusion to user through the

system. The usage of the log files analyzer HIDS is limited

used to the host-based level. The study had done by the

system can read security event log files from Windows/Linux.

Then, the system can make comparison for that file with the

intrusion pattern files that reside inside the database.

Therefore, if these two files had matching structure, the

system will assume this file is an intrusion and give an alert to

the user.

Security event log files from Windows/Linux are needed to be

analyzed by any system like log file analyzer HIDS for

security purposes in host or Computer. The types or structure

of intrusion pattern needs to be revised and updated regularly.

The most important things is that the organizations have a

system to detect many threats in a computer host. It will

support to prevent an organization from most of the threats

[13].

REFERENCES

[1]. Pedro Bueno (2002), Intrusion Detection Systems, Linux Journal,

Volume 2002, Issue 97(May 2002), Specialized Systems

Consultants, Inc.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue IV, April 2018 | ISSN 2278-2540

www.ijltemas.in Page 133

[2]. Wenke Lee et al., (2000), A Framework for Constructing Features
and Models for Intrusion Detection Systems, ACM Transactions

on Information and System Security (TISSEC), Volume 3 Issue 4,

ACM Press.
[3]. Boer P. et al., (2005), Host-based Intrusion Detection Systems,

Revision1.10 – February 4, 2005, SNB student projects 2004 -

2005M. Young, the Technical Writer's Handbook. Mill Valley,
CA: University Science, 1989.

[4]. Edit_distance (2017). http://en.wikipedia.org/wiki/Edit_distance.

[5]. RW Hamming, Error detecting and error correcting codes. Bell
Syst. Tech. J. 29.

[6]. V Levenshtein, Binary codes capable of correcting deletions.

Insertions Reversals. Sov. Phys. Dokl. 10(8), 707 (1966).
[7]. F Damerau, A technique for computer detection and correction of

spelling errors. Commun. ACM. 7(3), 171–176 (1964).

[8]. S Wandelt, D Deng, S Gerdjikov, S Mishra, P Mitankin, M Patil,
E Siragusa, A Tiskin, W Wang, J Wang, U Leser, State-of-the-art

in string similarity search and join, vol. 43, (2014).

[9]. C Ranger, R Raghuraman, A Penmetsa, G Bradski, C Kozyrakis,

in 2007 IEEE 13th International Symposium on High Performance

Computer Architecture. Evaluating Map Reduce for multi-core
and multiprocessor systems (Scottsdale, 2007), pp. 13–24.

[10]. Y Shan, B Wang, J Yan, Y Wang, N Xu, H Yang, in Proceedings

of the 18th annual ACM/SIGDA international symposium on Field
programmable gate arrays (FPGA ’10). FPMR: Map Reduce

framework on FPGA (ACM New York, 2010), pp. 93–102.

[11]. C Hong, D Chen, W Chen, W Zheng, H Lin, inProceedings of the
19th international conference on Parallel architectures and

compilation techniques (PACT ’10). MapCG: writing parallel

program portable between CPU and GPU (ACM New York,
2010), pp. 217–226.

[12]. S Wu, U Manber, A fast algorithm formulti-pattern searching,

Technical Report TR-94–17 Department of Computer Science,
University of Arizona, 1994).

[13]. Firkhan Ali, H. A., “An Analysis of Possible Exploits in the

Computer Network’s Security “in ISC 2005: Proceedings of the
International Science Congress 2005. PWTC, Kuala Lumpur,

2005. pp.338.

