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I. INTRODUCTION 

Volterra examined the linear Volterra integral equation of the 

form [1-5]  

𝑢 𝑥 = 𝑓 𝑥 + 𝜆  𝑘 𝑥, 𝑡 𝑢 𝑡 𝑑𝑡
𝑥

0
 …………… (1) 

where the unknown function 𝑢 𝑥 , that will be determined, 

occurs inside and outside the integral sign. The kernel 

𝑘 𝑥, 𝑡 and the function 𝑓 𝑥  are given real-valued functions, 

and 𝜆 is a parameter. The Volterra integral equations appear in 

many physical applications such as neutron diffusion and 

biological species coexisting together with increasing and 

decreasing rates of generating.  

The Kamal transform of the function 𝐹 𝑡 is defined as [6]: 

𝐾 𝐹 𝑡  =  𝐹 𝑡 𝑒
−𝑡

𝑣 𝑑𝑡
∞

0

= 𝐺 𝑣 , 𝑡 ≥ 0, 𝑘1 ≤ 𝑣 ≤ 𝑘2 

where 𝐾 is Kamal transform operator. 

The Kamal transform of the function  𝐹 𝑡  exist if 𝐹 𝑡  is 

piecewise continuous and of exponential order. These 

conditions are only sufficient conditions for the existence of 

Kamal tansform of the function  𝐹 𝑡 .Abdelilah and Hassan 

used Kamal transform for solving partial differential 

equations. 

The aim of this work is to establish exact solutions for linear 

Volterra integral equation using Kamal transform without 

large computational work. 

II. KAMAL TRANSFORM OF SOME ELEMENTARY 

FUNCTIONS [6, 8]: 

S.N. 𝐹 𝑡  𝐾 𝐹 𝑡  = 𝐺 𝑣  

1. 1 𝑣 

2. 𝑡 𝑣2 

3. 𝑡2 2! 𝑣3 

4. 𝑡𝑛 , 𝑛 ≥ 0 𝑛! 𝑣𝑛+1 

5. 𝑒𝑎𝑡  
𝑣

1 − 𝑎𝑣
 

6. 𝑠𝑖𝑛𝑎𝑡 
𝑎𝑣2

1 + 𝑎2𝑣2
 

7. 𝑐𝑜𝑠𝑎𝑡 
𝑣

1 + 𝑎2𝑣2
 

8. 𝑠𝑖𝑛ℎ𝑎𝑡 
𝑎𝑣2

1 − 𝑎2𝑣2
 

9. 𝑐𝑜𝑠ℎ𝑎𝑡 
𝑣

1 − 𝑎2𝑣2
 

III. KAMAL TRANSFORM OF THE DERIVATIVES OF 

THE FUNCTION𝐹 𝑡  [6, 8, 9] 

If 𝐾 𝐹 𝑡  = 𝐺(𝑣) then  

a) 𝐾 𝐹′ 𝑡  =
1

𝑣
𝐺 𝑣 − 𝐹(0) 

b) 𝐾{𝐹′′ 𝑡 } =
1

𝑣2 𝐺 𝑣 −
1

𝑣
𝐹 0 − 𝐹′(0) 

c) 𝐾{𝐹(𝑛) 𝑡 } =
1

𝑣𝑛
𝐺 𝑣 −

1

𝑣𝑛−1 𝐹 0 −
1

𝑣𝑛−2 𝐹
′ 0 ……−

𝐹 𝑛−1 (0) 

IV. CONVOLUTION OF TWO FUNCTIONS [8] 

Convolution of two functions 𝐹(𝑡)  and 𝐻(𝑡)  is denoted by 

𝐹 𝑡 ∗ 𝐻(𝑡)and it is defined by  

𝐹 𝑡 ∗ 𝐻 𝑡 = 𝐹 ∗ 𝐻 =  𝐹 𝑥 𝐻 𝑡 − 𝑥 𝑑𝑥
𝑡

𝑂

=  𝐻 𝑥 𝐹 𝑡 − 𝑥 𝑑𝑥
𝑡

𝑂

 

V. CONVOLUTION THEOREM FOR KAMAL 

TRANSFORMS [8] 

If 𝐾 𝐹 𝑡  = 𝐺(𝑣) and 𝐾 𝐻 𝑡  = 𝐼(𝑣) then  

𝐾 𝐹 𝑡 ∗ 𝐻 𝑡  = 𝐾 𝐹 𝑡  𝐾 𝐻 𝑡  = 𝐺 𝑣 𝐼(𝑣) 

VI. INVERSE KAMAL TRANSFORM 

If 𝐾 𝐹 𝑡  = 𝐺(𝑣)  then 𝐹 𝑡  is called the inverse Kamal 

transform of 𝐺(𝑣)  and mathematically it is defined as 

𝐹 𝑡 = 𝐾−1{𝐺 𝑣 } 
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where 𝐾−1 is the inverse Kamal transform operator. 

VII. INVERSE KAMAL TRANSFORM OF SOME 

ELEMENTARY FUNCTIONS 

S.

N. 
𝐺 𝑣  𝐹 𝑡 = 𝐾−1{𝐺 𝑣 } 

1. 𝑣 1 

2. 𝑣2 𝑡 

3. 𝑣3 
𝑡2

2!
 

4. 𝑣𝑛+1, 𝑛 ≥ 0 
𝑡𝑛

𝑛!
 

5. 
𝑣

1 − 𝑎𝑣
 𝑒𝑎𝑡  

6. 
𝑣2

1 + 𝑎2𝑣2
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

7. 
𝑣

1 + 𝑎2𝑣2
 𝑐𝑜𝑠𝑎𝑡 

8. 
𝑣2

1 − 𝑎2𝑣2
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

9. 
𝑣

1 − 𝑎2𝑣2
 𝑐𝑜𝑠ℎ𝑎𝑡 

 

VIII. KAMAL TRANSFORM FOR LINEAR VOLTERRA 

INTEGRAL EQUATIONS 

In this work we will assume that the kernel 𝑘 𝑥, 𝑡 of (1) is a 

difference kernel that can be expressed by the difference(𝑥 −
𝑡) . The linear Volterra integral equatin (1) can thus be 

expressed as  

𝑢 𝑥 = 𝑓 𝑥 + 𝜆  𝑘 𝑥 − 𝑡 𝑢 𝑡 𝑑𝑡
𝑥

0
 ……………   (2) 

Applying the Kamal transform to both sides of(2), we have 

𝐾{𝑢 𝑥 } = 𝐾{𝑓 𝑥 } + 𝜆𝐾{ 𝑘 𝑥 − 𝑡 𝑢 𝑡 𝑑𝑡}
𝑥

0
       (3) 

Using convolution theorem of Kamal transform, we have  

𝐾{𝑢 𝑥 } = 𝐾{𝑓 𝑥 } + 𝜆𝐾{𝑘 𝑥 }𝐾{𝑢 𝑥 }……….. (4) 

Operating inverse Kamal transform on both sides of(4), we 

have  

𝑢 𝑥 = 𝑓 𝑥 + 𝜆𝐾−1 𝐾{𝑘 𝑥 }𝐾{𝑢 𝑥 } ………..   (5) 

which is the required solution of (2). 

IX. APPLICATIONS 

In this section, some applications are given in order to 

demonstrate the effectiveness of Kamal transform for solving 

linear Volterra integral equations. 

A. Application:1 Consider linear Volterra integral equation 

with 𝜆 = −1 

𝑢 𝑥 = 𝑥 −   𝑥 − 𝑡 
𝑥

0
𝑢(𝑡)𝑑𝑡………… (6) 

Applying the Kamal transform to both sides of(6), we have 

𝐾{𝑢 𝑥 } = 𝑣2 − 𝐾   𝑥 − 𝑡 
𝑥

0
𝑢(𝑡)𝑑𝑡 …………. (7) 

Using convolution theorem of Kamal transform on  (7), we 

have  

𝐾{𝑢 𝑥 } =
𝑣2

1+𝑣2…………. (8) 

Operating inverse Kamal transform on both sides of(8), we 

have  

𝑢 𝑥 = 𝐾−1  
𝑣2

1+𝑣2 = 𝑠𝑖𝑛𝑥…………….. (9) 

which is the required exact solution of (6). 

B. Application:2 Consider linear Volterra integral equation 

with 𝜆 = −1 

𝑢 𝑥 = 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 −  𝑢(𝑡)
𝑥

0
𝑑𝑡…… (10) 

Applying the Kamal transform to both sides of(10), we have 

𝐾 𝑢 𝑥  =
𝑣

1+𝑣2 +
𝑣2

1+𝑣2 − 𝐾  𝑢(𝑡)
𝑥

0
𝑑𝑡 …………. (11) 

Using convolution theorem of Kamal transform on(11), we 

have  

𝐾{𝑢 𝑥 } =
𝑣

1+𝑣2…………. (12) 

Operating inverse Kamal transform on both sides of(12), we 

have  

𝑢 𝑥 = 𝐾−1  
𝑣

1+𝑣2 = 𝑐𝑜𝑠𝑥…………….. (13) 

which is the required exact solution of (10). 

C. Application:3 Consider linear Volterra integral equation 

with 𝜆 = 1 

𝑢 𝑥 = 1 − 𝑥 +   𝑥 − 𝑡 𝑢(𝑡)
𝑥

0
𝑑𝑡…… (14) 

Applying the Kamal transform to both sides of(14), we have 

𝐾 𝑢 𝑥  = 𝑣 − 𝑣2 + 𝐾   𝑥 − 𝑡 𝑢(𝑡)
𝑥

0
𝑑𝑡 …. (15) 

Using convolution theorem of Kamal transformon(15), we 

have  

𝐾 𝑢 𝑥  =
𝑣

1−𝑣2 −
𝑣2

1−𝑣2…………. (16) 

Operating inverse Kamal transform on both sides of(16), we 

have  

𝑢 𝑥 = 𝐾−1  
𝑣

1 − 𝑣2
 − 𝐾−1  

𝑣2

1 − 𝑣2
  

          = 𝑐𝑜𝑠ℎ𝑥 − 𝑠𝑖𝑛ℎ𝑥 = 𝑒−𝑥…………… (17) 

which is the required exact solution of (14). 

D. Application:4 Consider linear Volterra integral equation 

with 𝜆 = −1 
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𝑢 𝑥 = 1 −   𝑥 − 𝑡 𝑢(𝑡)
𝑥

0
𝑑𝑡…… (18) 

Applying the Kamal transform to both sides of(18), we have 

𝐾 𝑢 𝑥  = 𝑣 − 𝐾   𝑥 − 𝑡 𝑢(𝑡)
𝑥

0
𝑑𝑡 …. (19) 

Using convolution theorem of Kamal transform on(19), we 

have  

𝐾 𝑢 𝑥  =
𝑣

1+𝑣2…………. (20) 

Operating inverse Kamal transform on both sides of(20), we 

have  

𝑢 𝑥 = 𝐾−1  
𝑣

1+𝑣2 = 𝑐𝑜𝑠𝑥………… (21) 

which is the required exact solution of (18). 

E. Application:5 Consider linear Volterra integral equation 

with 𝜆 = 1 

𝑢 𝑥 = 1 −
𝑥2

2
+  𝑢(𝑡)

𝑥

0
𝑑𝑡……(22) 

Applying the Kamal transform to both sides of (22), we have 

𝐾 𝑢 𝑥  = 𝑣 − 𝑣3 + 𝐾  𝑢(𝑡)
𝑥

0
𝑑𝑡 …. (23) 

Using convolution theorem of Kamal transform on(23), we 

have  

𝐾 𝑢 𝑥  = 𝑣 + 𝑣2…………. (24) 

Operating inverse Kamal transform on both sides of(16), we 

have  

𝑢 𝑥 = 𝐾−1 𝑣 + 𝐾−1 𝑣2  

          = 1 + 𝑥…………… (25) 

which is the required exact solution of (22). 

X. CONCLUSION 

In this paper, we have successfully developed the Kamal 

transform for solving linear Volterra integral equations. The 

given applications showed that the exact solution have been 

obtained using very less computational work and spending a 

very little time. The proposed scheme can be applied for other 

linear Volterra integral equations and their system. 
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