
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue V, May 2018 | ISSN 2278-2540

www.ijltemas.in Page 145

Self-driving Autonomous Car Implementing Maps

and V2V

Khyati Mehta
1
, Mehzabeen Najmi

2
, Deepthi. V

3
, K.N. Hemalatha

4

1,2,3
UG Students,

4
Assistant Professor

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India

Abstract—This paper introduces an autonomous car that drives

itself built using Raspberry Pi. It is trained using an artificial

neural network to drive like the trainer and follows Google Map

directions along with V2V for blind spot detection.

Keywords—RaspberryPi, artificial neural network, google maps,

V2V, blind spot detection

I. INTRODUCTION

ver 1,000,000 accidents happen every year due to bad

human driving. The major cause is drunk driving. Other

causes include diversion of the driver from road, due to falling

asleep, or texting while driving. These incidences require a

revolutionary idea that can implement road safety. Here's

where a driverless car can be helpful. This paper introduces a

1/18
th

 prototype which is state of the art autonomous car that

drives without any human intervention, by being trained using

artificial neural networks and by following google maps

directions along with implementing V2V protocol for blind

spot detection.

A. Block diagram

Fig 1.1 Functional Architecture

B. Hardware

 Raspberry pi 3 model B,

 Pi camera from Raspberry pi,

 HC-SR04 Ultrasonic Sensor,

 L239d motor driver,

 9V batteries for the motors, along with 5V 1A power

bank for Raspberry Pi,

 Solar panels to charge above batteries.

C. Software

 Raspbian OS – for raspberry pi.

 RPi_Cam_Web_Interface [1] – for recording Pi

camera video stream to the client.

 Application written using python for v2v and Google

Maps directions.

Fig 1.2 Working Block Diagram

D. Working

 The raspberry pi launches the RPi_Cam_Web_Interface

cloned from Github, which in turn launches a lighttpd or an

Apache server. A client on the same network can get a live

stream of the Pi camera. This interface also has the option for

video recording, which is used for recording the video of

initial driving of the car. The car is driven by the user itself,

and the recorded video is downloaded to a computer. This

video is then converted into pictures with 10 frames per

second into original colored images. These images are then

converted into OpenCV array [2] which can then be used as

data for artificial neural network to train on. Training is done

by labeling these images as left, right, forward and reverse

directional images, which is done manually. After training, the

O

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue V, May 2018 | ISSN 2278-2540

www.ijltemas.in Page 146

car is now capable of driving itself in a manner similar to the

initial driver.

On Google maps, a new route is created which is the travel

path for the autonomous car within campus. This route is then

downloaded in the form of kml file which contains the route

split up into many geographic co-ordinates. This information

is of importance. Alternately, the google maps Roads API can

also be used for generalized roads. The above hack is done for

the prototype only.

The python application uses the car’s present location, and

utilizes Haversine formula [3] to calculate the direction of

movement towards the next location to reach. This direction is

converted into degrees. The autonomous driving is done by

taking the prediction and multiplying that with the direction.

For example, suppose the predicted direction is left and

direction output in degrees is somewhere over 270 then the car

goes left. In this way, the car drives on its own, avoiding

obstacles with ultrasonic sensor, while following maps.

1) Distance Calculation Using Haversine Formula [3]

Haversine formula is used to calculate the great-circle

distance between two points – that is, the shortest distance

over the earth’s surface – giving an ‘as the crow flies’ distance

between the points. The Haversine formula is shown below:

Haversine

formula:

a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)

c = 2 ⋅ atan2(√a, √(1−a))

d = R ⋅ c

Where φ is latitude, λ is longitude, R is earth’s

radius (mean radius = 6,371km);

note that angles need to be in radians to pass

to trig functions!

Direction

Formula:

θ = atan2(sin Δλ ⋅ cos φ2 , cos φ1 ⋅ sin φ2 −

sin φ1 ⋅ cos φ2 ⋅ cos Δλ)

where φ1,λ1 is the start point, φ2,λ2 the end

point (Δλ is the difference in longitude)

The distance d is in km and the bearing is in

radians.

 Specifically in this case, the formula is used to calculate

distance and direction between two consecutive latitude-

longitude points. These points belong to the route plotted on

the maps that the car must follow. Once the car reaches that

point, the destination location is set to the next point and so on

till the end of the route.

Fig 2.1 Car’s Route on Google Maps

 Figure 2.1 shows a snapshot of the car’s route plotted in

Google maps.

 Figure 2.2 shows a snapshot of the longitude-latitude

points collected from this route using Google Maps kml file.

Fig 2.2 Long-Lat Points of Car’s Route

 Figure 2.3 shows a code snippet written in python that uses

Haversine formula and calculates distance between two points

along with direction in degree, to be followed.

Fig 2.3 Haversine Formula - Python

II. DATA COLLECTION AND TRAINING THE CAR

As explained above, the car is manually controlled first by

launching a server on raspberry pi and running a flask

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue V, May 2018 | ISSN 2278-2540

www.ijltemas.in Page 147

application that contains code to allow the client to control the

car by clicking on appropriate arrows, while being able to see

what the camera sees. Meanwhile, the

RPi_Cam_Web_Interface simultaneously runs when the

raspberry pi is turned on. Here, the video recording is begun.

The car is manually driven for about 5-10 laps, and that much

data is then downloaded into the client computer.

The video recorded and downloaded is then converted into

picture frames by extracting 10 frames per second with

original color (RGB). Figure 3.1 shows the code snapshot that

converts the video into a series of frames

Fig 3.1 Snapshot of the converted video to colored picture frames

A. Flask application

Flask is a micro web framework [4] written in

python, based on Werkzeug toolkit and Jinja2 template

engine. It doesn’t require particular tools or libraries. It has

no database abstraction layer, form validation, or any other

components where pre-existing third-party libraries

provide common functions.

In the project, the flask application runs on the

raspberry pi. Any device connected to the same network

can access this server. The forward, reverse, left, right and

stop keys are displayed on the webpage which are clicked

to control the bot. Within the app, the code calls

appropriate motor controlling functions that run the car.

The car is manually driven around the track for 2-3 laps.

Figure 3.2 shows a screenshot of the flask app running on

raspberry pi.

Fig 3.2 flask app screenshot

B. Streaming video and collecting data

 For streaming real time video, RPi_Cam_Web_Interface

is used which is cloned from its Github repository. Unlike

many video streaming programs, this particular software

allows to stream in real time. There’s almost no delay, which

is very useful for collecting data for this project.

The video recorded is downloaded into the host computer. The

video is then converted to series of images as explained above.

C. Controlling the motors using Raspberry Pi

 The raspberry Pi controls the motors by controlling the

motor driver L293D, which is used to control a maximum of 2

DC motors. This motor driver supports speed control as well

by its ‘En’ pin. The raspberry pi has 40 GPIO pins out of

which 6 are used in this project to connect to the L293D. The

hardware connection is shown in figure 3.3. Here, to configure

the GPIO pins, a python library called RPi.GPIO [5] is used. It

allows two methods of configuring the pins –

1. GPIO.PCM – Used to configure the pins as per their

GPIO pin names

2. GPIO.BOARD – Used to configure pins as they exist

on the board.

 In this case, GPIO.BOARD is utilized.

Fig 3.3 connections of the gpio pins

D. Data sorting and splitting

 Here the collected images are manually sorted out into the

left, right, forward and reverse folders respectively.

Once this is done, a program is written that converts images

from each of the folders one by one into numpy arrays and

labels them accordingly. Figure 3.4 shows the labels defined.

Fig 3.4 direction labels

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue V, May 2018 | ISSN 2278-2540

www.ijltemas.in Page 148

Suppose, an image is from the folder called ‘left’, then the

Numpy array representing that image is labeled as [1 0 0 0]. In

this way, all the images of all the folders are converted in a

format mathematically convenient and accordingly labeled.

 After the sorting out of data is done, the data has to be split

into training data - training labels and validation data –

validation labels. It’s a good practice as this allows proper

testing of the model before actually deploying it. The data is

split into 80% training and 20% validation data.

E. Training the car

 The car training is done by using OpenCV machine

learning library. Here, a fully connected neural network is

trained on the data above collected.

Fig 3.6 model definition

As seen from the figure, the model has 115200 neurons

(which is actually the product of the image resolution, in this

case 120x320 multiplied by 3 for colored images), in the first

layer, followed by 2 hidden layers of sizes 32 and 8 neurons

each followed by the final output layer which has 4 neurons;

each representing left, right, forward and reverse.

After training the model, it is tested on validation data and

the predictions are compared with validation labels, to check

its accuracy. With this network model, the project shows an

accuracy of 97.54%.

F. Implementing V2V

 Vehicle to Vehicle communication is implemented in this

prototype only for blind-spot detection. Any time the car is too

close to another car, precisely, less than 40cm, the car puts up

a pop-up message in the flask app, and slows down a little.

The other car connected on the same network, also gets the

pop up and can drive safer.

III. CONCLUSION

The ongoing technology of using Li-dar in self-driving cars is

very complicated and expensive. In this paper we present a

cost effective technology which implements the concept of a

self driving car using maps and v2v. Our approach involves

the use of machine learning, specifically, artificial neural

networks to replace any/all sensors only with a camera, using

precise image processing. The accuracy of this prototype is

found to be approximately 97% as shown in the figure 4.1.

The use of Li-Dar technology is eliminated here and the

concept of Artificial Intelligence in Cars is introduced in this

paper. We have open-sourced all the technology used for this

prototype [6] and it can easily be implemented. The main

purpose of this paper is to introduce artificial intelligence in

the car with effective image processing to replace sensors with

only cameras and enable it to autonomously drive.

Fig 4.1 Training, Testing and Accuracy of the self-driving car

REFERENCES

[1]. https://github.com/silvanmelchior/RPi_Cam_Web_Interface
[2]. https://github.com/RyanZotti/Self-Driving-Car.

[3]. https://en.wikipedia.org/wiki/Great-circle_distance
[4]. https://en.wikipedia.org/wiki/Flask_(web_framework)

[5]. https://pypi.org/project/RPi.GPIO/

[6]. https://github.com/KhyatiMehta3/AutRcCar
[7]. https://www.nature.com/articles/nature14236 : Human - level

control using deep reinforcement learning.

[8]. https://www.citylab.com/life/2014/04/first-look-how-googles-self-
driving-car-handles-city-streets/8977/ : First look on how google's

self driving car handles city streets.

[9]. https://ai.intel.com/demystifying-deep-reinforcement-learning/ :
Demystifying deep reinforcement learning.

[10]. "Build an Autonomous R/C Car with Raspberry Pi" by Adam

Conway & William Roscoe.
[11]. https://www.pyimagesearch.com/2017/10/02/deep-learning-on-

the-raspberry-pi-with-opencv/

[12]. http://socialledge.com/sjsu/index.php/F16:_Titans

[13]. https://github.com/BoltzmannBrain/self-driving

[14]. "Long-term Planning by Short-term Prediction" By Shai Shalev-

Shwartz, Nir Ben-Zrihem, Aviad Cohen & Amnon Shashua
[15]. "End to End Learning for Self-Driving Cars" By Mariusz Bojarski,

Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D., Jackel Mathew, Monfort Urs
Muller, Jiakai Zhang, Xin Zhang, Jake Zhao & Karol Zieba.

[16]. "Programming a self driving car" By Onishim Hasdak.

[17]. https://github.com/multunus/autonomous-rc-car
[18]. https://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-

pi/setting-everything-up

https://github.com/RyanZotti/Self-Driving-Car
https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://pypi.org/project/RPi.GPIO/

