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I. INTRODUCTION 

athematical modeling of real life problems usually 

results in functional equations e.g. stochastic equations, 

integral and integro-differential equations, partial differential 

equations and others. In particular integro-differential 

equations arise in many scientific and engineering 

applications such as glass forming process, diffusion process, 

heat transfer, in general neutron diffusion, nano-

hydrodynamics and biological species coexisting together 

with increasing and decreasing rates of generating and wind 

ripple in the desert. 

Volterra studied the hereditary influences when he was 

examining a population growth model. The research work 

resulted in a specific topic, where both differential and 

integral operators appeared together in the same equation. 

This new type of equations was termed as Volterra integro-

differential equations [1-5] given in the form  

𝑢𝑛 𝑥 = 𝑓 𝑥 + 𝜆 𝑘 𝑥, 𝑡 𝑢 𝑡 𝑑𝑡 ………… . (1)
𝑥

0

 

where 𝑢𝑛 𝑥 =
𝑑𝑛𝑢

𝑑𝑥 𝑛 . Because the resulted equation (1) 

combines the differential and integral operators, then it is 

necessary to define initial conditions 

𝑢 0 , 𝑢′ 0 , …… . . , 𝑢 𝑛−1 (0)  for the determination of the 

particular solution 𝑢(𝑥)  of the Volterra integro-differential 

equation (1). 

Any Volterra integro-differential equation is characterized by 

the existence of one or more of the derivatives 

𝑢′ 𝑥 , 𝑢′′ 𝑥 , 𝑢′′′ 𝑥 , …… ..  outside the integral sign. Volterra 

integro-differential equations may be observed when we 

convert an initial value problem to an integral equation by 

using Leibnitz rule. 

The Mahgoub transform of the function 𝐹 𝑡 is defined as [6]: 

𝑀 𝐹 𝑡  = 𝜈 𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

= 𝐻 𝑣 , 𝑡 ≥ 0, 𝑘1 ≤ 𝑣 ≤ 𝑘2 

where 𝑀 is Mahgoub transform operator. 

The Mahgoub transform of the function 𝐹 𝑡  for 𝑡 ≥ 0 exist if 

𝐹 𝑡  is piecewise continuous and of exponential order. These 

conditions are only sufficient conditions for the existence of 

Mahgoub transform of the function  𝐹 𝑡 . Mahgoub and 

Alshikh [7] used Mahgoub transform for solving partial 

differential equations. Fadhil [8] discussed the convolution for 

Kamal and Mahgoub transforms. Taha et. al. [9] gave the 

dualities between Kamal & Mahgoub integral transforms and 

some famous integral transforms. 

The aim of this work is to establish exact solutions for linear 

Volterra integro-differential equations of second kind using 

Mahgoub transform without large computational work. 

II. MAHGOUB TRANSFORM OF SOME ELEMENTARY 

FUNCTIONS [6, 8]: 

S.N

. 
𝐹 𝑡  𝑀 𝐹 𝑡  = 𝐻 𝑣  

1. 1 1 

2. 𝑡 
1

𝑣
 

3. 𝑡2 
2!

𝑣2
 

4. 𝑡𝑛 , 𝑛 ≥ 0 
𝑛!

𝑣𝑛
 

5. 𝑒𝑎𝑡  
𝑣

𝑣 − 𝑎
 

6. 𝑠𝑖𝑛𝑎𝑡 
𝑎𝑣

𝑣2 + 𝑎2
 

M 
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7. 𝑐𝑜𝑠𝑎𝑡 
𝑣2

𝑣2 + 𝑎2
 

8. 𝑠𝑖𝑛ℎ𝑎𝑡 
𝑎𝑣

𝑣2 − 𝑎2
 

9. 𝑐𝑜𝑠ℎ𝑎𝑡 
𝑣2

𝑣2 − 𝑎2
 

III. MAHGOUB TRANSFORM OF THE DERIVATIVES 

OF THE FUNCTION𝐹 𝑡  [6, 8, 9]: 

If 𝑀 𝐹 𝑡  = 𝐻(𝑣) then  

a) 𝑀 𝐹′ 𝑡  = 𝑣𝐻 𝑣 − 𝑣𝐹(0) 

b) 𝑀{𝐹′′ 𝑡 } = 𝑣2𝐻 𝑣 − 𝑣𝐹′(0) − 𝑣2𝐹 0  
c) 𝑀{𝐹(𝑛) 𝑡 } =

𝑣𝑛𝐻 𝑣 − 𝑣𝑛𝐹 0 − 𝑣𝑛−1𝐹′ 0 ……− 𝑣𝐹 𝑛−1 (0) 

IV. CONVOLUTION OF TWO FUNCTIONS [8] 

Convolution of two functions 𝐹(𝑡)  and 𝐺(𝑡)  is denoted by 

𝐹 𝑡 ∗ 𝐺(𝑡) and it is defined by  

𝐹 𝑡 ∗ 𝐺 𝑡 = 𝐹 ∗ 𝐺 =  𝐹 𝑥 𝐺 𝑡 − 𝑥 𝑑𝑥
𝑡

𝑂

=  𝐹 𝑡 − 𝑥 𝐺 𝑥 𝑑𝑥
𝑡

𝑂

 

V. CONVOLUTION THEOREM FOR MAHGOUB 

TRANSFORMS [8] 

If 𝑀 𝐹 𝑡  = 𝐻(𝑣) and 𝐾 𝐺 𝑡  = 𝐼(𝑣) then  

𝑀 𝐹 𝑡 ∗ 𝐺 𝑡  =
1

𝑣
𝑀 𝐹 𝑡  𝑀 𝐺 𝑡  =

1

𝑣
𝐻 𝑣 𝐼(𝑣) 

VI. INVERSE MAHGOUB TRANSFORM 

If 𝑀 𝐹 𝑡  = 𝐻(𝑣) then 𝐹 𝑡  is called the inverse Mahgoub 

transform of 𝐻(𝑣)  and mathematically it is defined as  

𝐹 𝑡 = 𝑀−1{𝐻 𝑣 } 

where 𝑀−1 is the inverse Mahgoub transform operator. 

VII. INVERSE MAHGOUB TRANSFORM OF SOME 

ELEMENTARY FUNCTIONS 

S.

N. 
𝐻 𝑣  𝐹 𝑡 = 𝑀−1{𝐻 𝑣 } 

1. 1 1 

2. 1

𝑣
 

𝑡 

3. 1

𝑣2
 

𝑡2

2!
 

4. 1

𝑣𝑛
, 𝑛 ≥ 0 

𝑡𝑛

𝑛!
 

5. 𝑣

𝑣 − 𝑎
 𝑒𝑎𝑡  

6. 𝑣

𝑣2 + 𝑎2
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

7. 𝑣2

𝑣2 + 𝑎2
 

𝑐𝑜𝑠𝑎𝑡 

8. 𝑣

𝑣2 − 𝑎2
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

9. 𝑣2

𝑣2 − 𝑎2
 

𝑐𝑜𝑠ℎ𝑎𝑡 

 

VIII. MAHGOUB TRANSFORM FOR LINEAR 

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS OF 

SECOND KIND 

In this section, we present Mahgoub transform for solving 

linear Volterra integro-differential equations of second kind 

given by (1). In this work, we will assume that the kernel 

𝑘(𝑥, 𝑡) of (1) is a difference kernel that can be expressed by 

difference (𝑥 − 𝑡).  The linear Volterra integro-differential 

equation of second kind (1) can thus be expressed as  

 
𝑢𝑛 𝑥 = 𝑓(𝑥) + 𝜆   𝑥 − 𝑡 𝑢 𝑡 𝑑𝑡

𝑥

0

𝑤𝑖𝑡ℎ 𝑢 0 = 𝑎0, 𝑢′ 0 = 𝑎1 , … . , 𝑢 𝑛−1  0 = 𝑎𝑛−1

 … . (3) 

Applying the Mahgoub transform to both sides of(3), we have 

𝑣𝑛𝑀 𝑢 𝑥  = 𝑣𝑛𝑎0 + 𝑣𝑛−1𝑎1 + ⋯… . . +𝑣𝑎𝑛−1 + 𝑀{𝑓 𝑥 }

+ 𝜆𝑀{ 𝑘 𝑥 − 𝑡 𝑢 𝑡 𝑑𝑡} … . . (4)
𝑥

0

 

Using convolution theorem of Mahgoub transform, we have  

𝑀 𝑢 𝑥  = 𝑎0 +
𝑎1

𝑣
+ ⋯… . . +

𝑎𝑛−1

𝑣𝑛−1
+

1

𝑣𝑛
𝑀 𝑓 𝑥  

+
𝜆

𝑣𝑛+1
𝑀 𝑘 𝑥  𝑀 𝑢 𝑥  …… . (5) 

Operating inverse Mahgoub transform on both sides of(5), we 

have  

𝑢 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯… . +𝑎𝑛−1

𝑥𝑛−1

𝑛 − 1!

+ 𝑀−1  
1

𝑣𝑛
𝑀 𝑓 𝑥   

+ 𝜆𝑀−1  
1

𝑣𝑛+1
𝑀 𝑘 𝑥  𝑀 𝑢 𝑥   ……(6) 

which is the required solution of (3). 

IX. APPLICATIONS 

In this section, some applications are given in order to 

demonstrate the effectiveness of Mahgoub transform for 

solving linear Volterra integro-differential equation of second 

kind. 

 Application: 1 Consider linear Volterra integro-differential 

equation of second kind 
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𝑢′ 𝑥 = 2 +  𝑢 𝑡 𝑑𝑡

𝑥

0

𝑤𝑖𝑡ℎ 𝑢 0 = 2
 …… (7) 

Applying the Mahgoub transform to both sides of (7) and 

using initial condition, we have 

𝑣𝑀 𝑢 𝑥  = 2 + 2𝑣 + 𝑀  𝑢(𝑡)
𝑥

0

𝑑𝑡 … . (8) 

Using convolution theorem of Mahgoub transform on (8) and 

simplify, we have  

𝑀 𝑢 𝑥  =
2𝑣

𝑣 − 1
…… . (9) 

Operating inverse Mahgoub transform on both sides of(9), we 

have  

𝑢 𝑥 = 𝑀−1  
2𝑣

𝑣 − 1
 = 2𝑀−1  

𝑣

𝑣 − 1
 = 2𝑒𝑥 …… (10) 

which is the required exact solution of (7). 

Application: 2 Consider linear Volterra integro-differential 

equation of second kind 

 
𝑢′′ 𝑥 = 1 +   𝑥 − 𝑡 𝑢 𝑡 𝑑𝑡

𝑥

0

𝑤𝑖𝑡ℎ 𝑢 0 = 1, 𝑢′ 0 = 0
 ……(11) 

Applying the Mahgoub transform to both sides of (11) and 

using initial condition, we have 

𝑣2𝑀 𝑢 𝑥  = 1 + 𝑣2 + 𝑀    𝑥 − 𝑡 
𝑥

0

𝑢(𝑡)𝑑𝑡 … . (12) 

Using convolution theorem of Mahgoub transform on  (12) 

and simplify, we have  

𝑀 𝑢 𝑥  =
𝑣2

𝑣2 − 1
…… . (13) 

Operating inverse Mahgoub transform on both sides of(13), 

we have  

𝑢 𝑥 = 𝑀−1  
𝑣2

𝑣2 − 1
 = 𝑐𝑜𝑠ℎ𝑥 ……(14) 

which is the required exact solution of (11). 

Application: 3 Consider linear Volterra integro-differential 

equation of second kind 

 
𝑢′′′ 𝑥 = −1 +  𝑢 𝑡 𝑑𝑡

𝑥

0

𝑤𝑖𝑡ℎ 𝑢 0 = 𝑢′ 0 = 1, 𝑢′′ 0 = −1
 …… (15) 

Applying the Mahgoub transform to both sides of (15) and 

using initial condition, we have 

𝑣3𝑀 𝑢 𝑥  = 𝑣3+𝑣2 − 𝑣 − 1 +
1

𝑣
𝑀   𝑢(𝑡)

𝑥

0

𝑑𝑡 … . (16) 

Using convolution theorem of Mahgoub transform on  (16) 

and simplify, we have  

𝑀 𝑢 𝑥  =
𝑣2

𝑣2 + 1
+

𝑣

𝑣2 + 1
…… . (17) 

Operating inverse Mahgoub transform on both sides of(17), 

we have  

𝑢 𝑥 = 𝑀−1  
𝑣2

𝑣2 + 1
 + 𝑀−1  

𝑣

𝑣2 + 1
 

= 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 …… (18) 

which is the required exact solution of (15). 

Application: 4 Consider linear Volterra integro-differential 

equation of second kind 

 
𝑢′′ 𝑥 = 𝑥 +   𝑥 − 𝑡 𝑢 𝑡 𝑑𝑡

𝑥

0

𝑤𝑖𝑡ℎ 𝑢 0 = 0, 𝑢′ 0 = 1
 …… (19) 

Applying the Mahgoub transform to both sides of (19) and 

using initial condition, we have 

𝑣2𝑀 𝑢 𝑥  = 𝑣 +
1

𝑣
+ 𝑀   𝑥 − 𝑡 

𝑥

0

𝑢(𝑡)𝑑𝑡 … (20) 

Using convolution theorem of Mahgoub transform on  (20) 

and simplify, we have  

𝑀 𝑢 𝑥  =
𝑣

𝑣2 − 1
…… . (21) 

Operating inverse Mahgoub transform on both sides of(21), 

we have  

𝑢 𝑥 = 𝑀−1  
𝑣

𝑣2 − 1
 = 𝑠𝑖𝑛ℎ𝑥 …… (22) 

which is the required exact solution of (19). 

X. CONCLUSION 

In this paper, we have successfully developed the Mahgoub 

transform for solving linear Volterra integro-differential 

equation of second kind. The given applications show that the 

exact solution have been obtained using very less 

computational work and spending a very little time. The 

proposed scheme can be applied for other linear Volterra 

integral equations and their system. 
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