
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue VI, June 2018 | ISSN 2278-2540

www.ijltemas.in Page 125

Tapping the Full Potential of Multicore on Intelligent

Machines with Parallel Algorithms
Amudha L

1
, Nithya T. M

2
, Ramya J

3
, Infant Raj I

4

1,2,3,4
Assistant Professor, Dept. of CSE, K. Ramakrishnan College of Engineering, Tiruchirappalli, TamilNadu, India

Abstract - The number of cores in a computing machine is

doubling each generation. As the number of cores on multi-cores

increase, all cores must be effectively utilized. So there should be

a different approach in programming. One such solution is

Parallel Programming or Parallel Computing.Parallel computing

is a type of computation in which many calculations or the

execution of processes are carried out simultaneously. Large

problems can often be divided into smaller ones, which can then

be solved at the same time. The main reason for the difficulty in

improving the efficiency is due to the conventional step by step

programming of the traditional programming languages.

Parallel algorithms that run on parallel processors will be a

better hope for performance improvement of today’s fast

computing devices. Today with the advent of numerous

automated machines, and big data, conventional programming

languages does not promise effective use of the hardware which

in turn reduces the performance. Hence this paper, unveils the

parallel programming languages that can be used for intelligent

machines like robots, high speed computational devices, data

analytics engine, etc

Keywords - Sequential, parallel computation, parallel algorithms,

performance, speed.

I. INTRODUCTION

 parallel language is able to express programs that are

executable on more than one processor. Parallel

processing is a great opportunity for developing high

performance systems and solving large problems in many

application areas. During the last few years parallel computers

ranging from tens to thousands of computing elements

became commercially available. They continue to gain

recognition as powerful tools in scientific research,

information management, and engineering applications. This

trend is driven by parallel programming languages and tools

that contribute to make parallel computers useful in

supporting a broad range of applications. Many models and

languages have been designed and implemented to allow the

design and development of applications on parallel computers.

Parallel programming languages (called also concurrent

languages) allow the design of parallel algorithms as a set of

concurrent actions mapped onto different computing

elements. The cooperation between two or more actions can

be performed in many ways according to the selected

language. The design of programming languages and software

tools for parallel computers is essential for wide diffusion and

efficient utilization of these novel architectures. High-level

languages decrease both the design time and the execution

time of parallel applications, and make it easier for new users

to approach parallel computers.

This paper is designed to explore about the different types of

parallel programming languages that can improve the

efficiency of utilizing the cores of a multi processing

computer. Pipelining of tasks are needed for implementing

parallel algorithms. The benefits of parallel programs over

sequential programs is listed below,

1. Parallel programming executes the code efficiently,

2. Parallel programming saves time

3. Parallel programming scales with program size,

hence produces solution for larger problems with

ease.

II. INTELLIGENT MACHINES

Unlike a computer to solve computational problems,

intelligent machines are developed to solve analytical and

logical problems as human brain solves, based on continuous

learning. Since brain computations are done in different

manner from a digital computer. A digital computer does

computations sequentially whereas, human brains makes use

of the massive network of parallel and distributed

computational elements called neurons. This large number of

connections gives the human with powerful capability of

learning. Motivated by this biological model, scientists today

has decided to build computational systems that can process

information in a similar way as the brain does. Astonishing

developments in semiconductor technology has given new life

to the machines, with the aid of artificial intelligence

techniques. Machine with vision processes are made up of

Extensive Graphics Processing Units (GPUs), multicore very

Long Instruction Word Digital Signal Processors (VLIW

DSPs).Any typical DSP multicore can be used for intelligent

processing.

III. MULTICORE COMPUTATION

Multi core computation uses a single computing element with

2 or more cores (CPUs). Each such core is usually integrated

into a separate IC chip. Also each core has dedicated memory

and cache that helps in storage and runtime efficient storage.

A

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue VI, June 2018 | ISSN 2278-2540

www.ijltemas.in Page 126

Fig 1. Multicore computing architecture

IV. PARALLEL ALGORITHMS

Some of the standard parallel algorithms are Map Scatter,

Gather Reduction Scan Search, Sort.Parallel algorithms deals

with shared memory. Certain issues like how processors are

activated and how the shared memory is accessed is

controlled by the parallel algorithm and its compiler.

The algorithmic building blocks of parallel algorithms are

Map, Scatter, Gather and Scatter Reductions, Scan, Sort and

Search.

1) MAP

Map is a parallel computing paradigm where simple

operations are applied to all elements parallel. It is used to

solve problems that can be decomposed into independent

subtasks requiring no communication or synchronization

between the computing elements. Fig.2 shows a graphical

representation of solving Depth First Search traversal using

map reduce concept.

Fig2. Map reduce with DFS

2) SCATTER

Scatter module writes a single data item to multiple locations.

The GPU support is provided at elementary level using global

memory. Scatter is faster if locality and repeated access can

be exploited. Gather module reads multiple data items to a

single location.

Fig 3. Scatter-Gather representation

3) REDUCTION

With identity IBinary associative operator, Ordered set s =

[a0, a1, ..., an-1] of n elements an-1 ...  a1, s) returns a0

Reduce. For Example: reduce (+, [3 1 7 0 4 1 6 3]) = 25

Reductions common in parallel algorithms. Common

operators used in reduce operation are +, ×, min and max.1D

parallel reduction is a technique that adds two halves of list

together repeatedly until we are left with a single value.

Fig 4. 1D Parallel Reduction

4) CUDA REDUCTION

Tree-based approach used within each thread block Need to

be able to use multiple thread blocks. Cuda reduction helps to

process very large arrays and to keep all multiprocessors on

the GPU busy always. During cuda reduction each thread

blockreduces a portion of the array.

Fig. 5 Tree notation of CUDA GPU reduction

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue VI, June 2018 | ISSN 2278-2540

www.ijltemas.in Page 127

5) SCAN

Binary associative operator with identity I Ordered set s = [a0,

a1, ..., an-1] of n elements a1), ..., (a0, s) returns[I, a0, (a0

Scan(an-2)] ...  a1 

 Example: scan(+, [3 1 7 0 4 1 6 3]) =[0 3 4 11 11 15 16 22]

Radix sort Sparse matrices Quicksort Polynomial evaluation

String comparison Solving recurrences Lexical analysis Tree

operations Stream compaction Histograms

V. EXPERIMENTAL EVALUATION

With the increase in number of cores, larger problems can be

solved in milliseconds, which might take very large time if the

same computation is done using sequential program with a

single processor or even with multi-threading. To evaluate the

processing power of the cores, this paper tests with the

Bitonic Sort algorithm. The number of comparisons done by

bitonic sort is greater than the number of comparisons done by

merge sort or quick sort. But Bitonic sort is always better for

parallel computational processors, since the algorithm uses a

recursive approach in aligning the numbers in the sorted

sequence.

Bitonic principle:

A sequence is called Bitonic if it is first increasing, then

decreasing. In other words, an array arr[0..n-i] is Bitonic if

there exists an index j where 0<=j<=n-1 such that, x0 <= x1

…..<= xj andxj>= xj+1….. >= xn-1.

1. A sequence, sorted in increasing order is considered

Bitonic with the decreasing part as empty. Similarly,

decreasing order sequence is considered Bitonic with

the increasing part as empty.

2. A rotation of Bitonic Sequence is also bitonic.

Fig. 6.Sequential Vs Parallel efficiency

Speed up: Speedup = the quotient between the speed of the

parallel algorithm and the speed of the corresponding

sequential algorithm.

A parallel algorithm is efficient if and only if it is fast and the

product of parallel time and the number of processors is close

to the time of the sequential algorithm. That is, if N is the

number of cores and Tseq is the time to complete using

sequential algorithm and Tpar is the time taken to execute the

algorithm using parallel algorithm, Tpar X N ≈ Tseq.

VI. EVALUATION RESULTS ON SORTING

The following chart is the pictorial representation of the

comparing the speed of different types of sequential

algorithms like merge sort, radix sort, quick sort with parallel

algorithms IBR Bitonic sort and Bitonic sort. The graphs

shows the radical increase in speed for the IBR bitonic sort

algorithm for parallel programming.

Fig 7. Comparison of sorting algorithms with parallel computation

VII. CONCLUSION

Recent work on parallel algorithms has focused on solving

problems from domains such as pattern matching, data

structures, sorting, computational geometry, combinatorial

optimization, linear algebra, and linear and integer

programming. However, some parallel computers cannot

efficiently execute all algorithms, even if the algorithms

contain a great deal of parallelism. Thus the magic lies in

identifying the feasibility and performance gain that can be

achieved with the type of parallel algorithm and the problem

that is to be solved.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VII, Issue VI, June 2018 | ISSN 2278-2540

www.ijltemas.in Page 128

REFERENCES

[1]. Peters H, Schulz-Hildebrandt O, Luttenberger N. Fast in-place,
comparison-based sorting with CUDA: A study with bitonic sort.

Concurr.Comput. : Pract. Exper. May 2011; 23(7):681–693,
doi:10.1002/cpe.1686. URL http://dx.doi.org/10.1002/cpe.1686.

[2]. Peters H, Schulz-Hildebrandt O, Luttenberger N. A novel sorting

algorithm for many-core architectures based on adaptive bitonic
sort. 26th IEEE International Parallel and Distributed Processing

Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012,

2012; 227–237, doi:10.1109/IPDPS.2012.30. URL
http://dx.doi.org/ 10.1109/IPDPS.2012.30.

[3]. Dehne F, Zaboli H. Deterministic sample sort for GPUs. CoRR

2010; abs/1002.4464.URL http://dblp.uni-
trier.de/db/journals/corr/corr1002.html#abs- 1002- 4464.

[4]. Harris M. Optimizing Parallel Reduction in CUDA. Technical

Report, nVidia 2008. URLhttp://developer.
download.nvidia.com/assets/cuda/files/reduction.pdf.

[5]. Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction to

Algorithms, Third Edition. 3rd edn., The MIT Press, 2009.

