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Abstract:-In Time series forecasting, model building is the most
time consuming process. Model building for all-time series is a
difficult proposition in terms of time consumption when we have
to deal with high volumes of time series. So, clustering the time
series can help grouping similar time series in together. There are
many available algorithms for creating time series clusters. We
have used DTW algorithm to get DTW distance matrix and this
distance matrix is used to create hierarchical clusters [4] of Time
series. DTW algorithm finds the minimal distance between pairs
of sequences by allowing flexible shift in alignment to compute
pair wise DTW distances.

Once time series clustering is done we need to fit the model to
Time Series clusters. In this paper, a novel algorithm is proposed
to fit different models to Time Series clusters. Different Time
Series models are evaluated for each cluster by using this
proposed algorithm. This ultimately reduces model building time
and hence overall forecasting time.

Keywords: Time Series clustering, Model fitting to Time Series
clusters, DTW distance matrix.

I. INTRODUCTION

In business, companies seek ways to gain an edge over
competitors through marketing strategies, whether they
offer a product or a service. Forecasting the demand is crucial
to any supplier, manufacturer, or retailer in the supply chain
management system. Forecast helps determine the amount of
inventory to be kept in hand, how much raw material should
be purchased, and how many products should be made [1].

—)

Also, a company can alter its business and marketing
strategies to satisfy the expected demands through forecasting
for future periods. For example, by monitoring consumer
demand at specific prices, a business can stock items that sell
well and scale back on items with poor sales. The company
can also use this information to make adjustments to its
pricing strategy, focusing on higher margin items or products
that are in high demand. By following demand closely and
making forecasts, the business gains an advantage over
competitors who fail to identify a shift or change in demand.
Inaccurate forecasts can lead to costly inventory buildup or
stockouts. Both of these events are harmful in a business
world where customer service is of the utmost importance.
During this process few industries have to deal with huge
volume of TS. Model building: the mandatory step, for Time
Series (TS) forecasting takes a longer time when we have to
deal with a large volume of TS [2].

Time series hierarchical clustering is done by taking DTW
distance matrix as input. DTW distance matrix of Time series
is calculated using DTW algorithm.

Once, time series clusters are done, in this paper we propose a
novel method/algorithmto fit Time Series models for different
Time Series clusters. Recognizing the least dissimilarity time
series of a cluster, model is fitted and same model continues
for the rest of the time series cluster unless user defined
tolerance, ICED limit is not violated.
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Fig-1 Time series clustering and proposed method for model fitting
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Il. HIERARCHICAL CLUSTERING APPROACH FOR
TIME SERIES ANALYSIS

DTW distance matrix is used as input to create Time Series

different groups based on similarity or distance, so that time
series in the same cluster are more similar [3]. One key
component in TS clustering is the function used to measure

the similarity between two data being compared. These data
could be in various forms including raw values of equal or
unequal length, vectors of feature-value pairs, transition
matrices, and so on. But DTW distance gives optimal
similarity measure among the time series and hence used to
create hierarchical Time Series clusters [4].

hierarchical clusters. Hierarchical clusters arrange TS (Time
Series) respect to its similarities index. It is an agglomerative
(top down) clustering method. This builds a hierarchy of
clusters, showing relations between the individual members
and merging clusters of data based on similarity. In
visualizing the result, a dendrogram is generated from the
clustering process, representing the nested grouping of
patterns and similarity levels at which groupings change [5].

Below (Figure-2) shows data set for which Time series is
prepared and then DTW distance matrix is calculated using

2.1 Time Series (TS) Clustering DTW algorithm.
Time series clustering is to partition time series data into
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Fig 2 Time series for which clustering is done
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2.2 Why Dynamic Time warping (DTW)

(DTW) is an algorithm for measuring similarity between two
temporal sequences which may vary in time or speed. For
instance, similarities in walking patterns can be detected using
DTW, even if one person was walking faster than the other, or
if there is any accelerations and deceleration during the course
of an observation. DTW allows for non-linear alignments
between time series not necessarily of the same length [7].In
general, DTW is a method that calculates an optimal match
between two given (time-dependent) sequences under certain
restrictions.  Intuitively, the sequences are warped in a
nonlinear fashion to match each other. Here, DTW has been
applied to automatically cope with time deformations and
different speeds associated with time-dependent data.Given
two time series, Q=q1,92,...,qi,...,qnand R=rl, r2,...,
rj,...,rm, DTW aligns the two series so that their difference
is minimized. To this end, an n x m matrix where the (i, j )
element of the matrix contains the distance d(qi, rj ) between
two points gi , and rj . The Euclidean distance is normally
used. A warping path, W =wl,w2, ..., wk, ..., wK where
max(m, n) less or equal to (K) less or equal to (m+n— 1), is a
set of matrix elements that satisfies three constraints:
boundary condition, continuity, and monotonically. The
boundary condition constraint requires the warping path to
start and finish in diagonally opposite corner cells of the
matrix. The DTW algorithm computes the time axis stretch
which optimally maps one time series onto another ; it outputs
the remaining cumulative distance between the two.

That is wl = (1, 1) and wK = (m, n). The continuity constraint
restricts the allowable steps to adjacent cells. The
monotonicity constraint forces the points in the warping path
to be monotonically spaced in time. The warping path that has
the minimum distance between the two series is of interest.
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Fig 3 Time alignment of two time-dependent sequences. Aligned points are
Indicated by the arrows

2.3 Observation from the clustering and model fitting

It is observed from figure 4 and 5 that there are many clusters
formed using DTW distance. For instance, the 2nd right most
cluster (in fig-4) include 6 time series. The time series 32 and
28 (the bottom most series of the cluster) has lowest level of
dissimilarity ( fig-5 (1)) and as we go up on the cluster the
dissimilarity level increases. Algorithm would detect which

time series category they belong and as per that the model
would be fitted. The starting point is to fit a model to least
dissimilar time series of one cluster and use the same model
across the cluster until the forecasting error is within the
tolerance level and ICED is satisfied Once, the forecasting
error exceeds the user defined tolerance, the set of other
models are evaluated and the model is picked whose tolerance
level is within the defined one.

I1l. ALGORITHM FOR CLUSTER MODEL FITTING

1. Find the optimal distance matrix of the TS (Time
Series) via DTW

2. Input the DTW distance to create Hierarchical
clustering.

3. Input from the user is taken ( Error Tolerance-ET,
Error Measure-EM, Intra Cluster Error Difference-
ICED)

4. Find out different TSs at lowest level cluster height:
can be got from the output of the hierarchical cluster.
(Please refer to figure 4). You can see that TS-28,
TS-32, TS23, TS 25, TS26 and TS5 belong to one
cluster and however TS-28 and TS-32 are most
similar ones.

5. Fit a model to TS-28 and determine the Error. ( say
the model, in this case is is Holt Winter, Error
Measure which has been selected by user is MAPE
and the Error is found out)

6. If Error <- Error Tolerance (ET), fit that model to
TS-32 also. If not select other model of your model
list and ensure the above criteria is fulfilled.

7. If Erroris not within ET for TS-32 ( say Error is 30
for TS- 28 and Error is 31 for TS-32. But user given
tolerance is 30. Then find out the difference of the
error measure ( or percentage difference of error -
say intra cluster error difference-ICED) between TS
28 and TS 32.

8. If ICED is within the permissible limit ( this limit is
given by the user), use the same model's parameter
(TS 28) to TS 30

9. If not, iterate other models' parameter (of your
current model list)

10. If not, try to evaluate all models for TS32 except
HW.

Below is the Figure showing the algorithm for model fitting to
TS cluster.
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IV. TIME OPTIMIZATION AFTER MODEL FITTING TO

Below are the optimizing parameters on which we can do time
optimization.
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Fig 4 Dendogram for the time series
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Fig-5 (ii) Plot for time series( 23,25,26 and 5)
Model repository has K TS models
TS CLUSTER Average time to fit one model for one TS =Ty,

4.1 Assumption:

No of clusters remaining constant: C

Each cluster has t Time Series

For each cluster,

Average time to fit one model for one TS =T, =0.8min

X % of TSs require model fitting x =0.4
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4.2 Overall time taken for model fitting in traditional way

The total time to fit the model to all time series = No of TS *
average time to fit one model* No of models = 100*0.8*5
=400min

de - Zﬁ :I{(C X t}) X Z;:?(Tavm X Ki) '“(l)
4.3 Overall time taken for model fitting in new approach

For one cluster, for first TS ( TS at lowest level) all models
are evaluated.

Thew = %5 (x/100) X (C X ;) X TiZ} (Topm X K;) ~(2)

Saving in the time compared to traditional approach in
percentage = (Tog— Trew) Tog® 100 — Time for creating
clusters (using DTW distance matrix) = 60 — (5 to 10) =50 to
55%

Usually 5-10% of the time (in terms of T,ym)

V. CONCLUSION

Time series analysis and forecasting is done at different level
of supply chain management system. With the historical data,
model is fitted and using that model prediction is done for
future period. When the time series increase, this model
building activities takes a longer time. Instead of creating
model for individual time series, clustering of time series is
performed. Optimal distance (DTW distance matrix) is found
out by using DTW algorithm. Hierarchical clustering is done
taking the DTW distance matrix into consideration. Our
algorithm finds which model can be a fit (within the tolerance
level) to a cluster. The lowest dissimilar time series (TS at the
lowest cluster height of one cluster) is the starting point to fit
a model to a cluster. Once model is decided w.r.t the least
dissimilar time series, same model is evaluated for the other
TSs of the cluster unless the defined tolerance is not
exceeded. In case, the forecasting error exceeds the defined

tolerance value, the next level of model is tried out. The
whole process saves time compared to individual model
fitting to volume of time series.
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ABBREVIATIONS AND DEFINITIONS

1. ET- Error Tolerance: is the user defined value
beyond which user cannot accept the error.

2. EM-Error Measure: is the error definition: MAPE,
MASE, MAE etc

3. ICED-Intra Cluster Error Difference: The difference
of the error value between two time series at the time
of model building within a cluster.

4. Cluster: Group of Time Series arranged within on the
basis of their similarity distance.

5. Cluster Height: The height on the basis of which
hierarchical cluster is done.

6. Model List: the list of Models (like Holt Winter,
ARIMA etc) which are going to be used for model
fitting to TS.
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