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Abstract: Design of ferroconcrete structures is ruled by the 
nonlinear manner of concrete and by its completely different 
strengths in tension and compression. The aim of this text is to 
show a computational process for optimum theoretical design of 
reinforced concrete structures, supported topology optimization 
with elastic-plastic material modeling. Concrete and steel are 
both considered as elastic-plastic materials, also the acceptable 
yield criteria and post-yielding response. The same process is 
applied also for topology optimization of alternative material 
compositions where nonlinear response should be considered. 
Optimized distribution of material is achieved by introducing 
interpolation rules for the each; elastic and plastic material 
properties. Many numerical models illustrate the capability and 
potential of the planned process. 

Keywords: Optimization, Structural analysis, Topology design, 
Plasticity, Reinforced concrete. 

I. INTRODUCTION 

tructural optimization techniques are currently changing 
into an integral part of the design method and are widely 

applied, as an example, within the automotive and region 
industries. So far, optimum design had less impact on ancient 
structural engineering as practiced within the construction 
industry. One reason may be the issue in combining numerical 
optimization tools with models which will accurately 
represent the advanced behavior of composite materials used 
by the building industry, like reinforced concrete. 

The aim of this text is to present a process procedure that 
allows optimum design of reinforced concrete structures. The 
approach will simply be generalized to accommodate 
alternative mixtures of materials besides steel and concrete. 
By combining topology optimization with elastic-plastic 
modeling of the candidate materials, it's attainable to think 
about not only the various elastic stiffness’s of the candidate 
materials, but also their distinct yield limits and yield criteria. 

Till now, the overwhelming majority of studies in 
structural topology optimization are restricted to elastic 
material. Elastic modeling is sufficient for deciding the 
distribution of one or a lot of material phases in a very given 
domain, but only as long as all material points stay in their 
elastic stress state. This can be clearly not the case in 
reinforced concrete, where the concrete part fails underneath 
comparatively low tension stresses. so nonlinear material 

modeling is important when aiming at optimum design of RC 
structures. Many studies are dedicated to topology 
optimization of elastic-plastic structures, as an example based 
on the von Mises yield criterion or the Drucker-Prager yield 
criterion. However, to the most effective of the authors' 
information, this can be the primary study wherever over one 
nonlinear candidate material is taken into account. Lately, 
point in time material optimization was used for improving 
the performance of fiber reinforced concrete Failure behavior 
of all candidate materials was considered, however the 
approach taken is restricted to layered structures and can't 
offer general layouts as obtained using topology optimization. 

One approach to visualizing the inner forces in cracked 
concrete beams is by an easy truss model introduced by Ritter. 
The resulting model, wide called the strut-and-tie model, has 
various applications in analysis and design of RC structures 
subjected to shear forces or torsion moments. Many 
researchers proposed to use a truss-like structure resulting 
from linear elastic topology optimization in order to predict a 
strut-and-tie model. Consequently, the truss bars underneath 
tension forces represent the placement of steel reinforcement 
while the compressed bars represent concrete. 

In the current study material nonlinearity of each concrete 
and steel is considered, and therefore a lot of realistic model is 
obtained. An interpolation scheme is proposed, specified by 
dynamical the density, the material properties and also the 
failure criteria vary between concrete and steel. The results of 
the optimization method are that the optimum distribution of 
concrete and steel within a definite domain. So an economical 
strut-and-tie model is directly obtained. 

II. NONLINEAR MATERIAL MODEL AND FINITE 
ELEMENT ANALYSIS 

In this section, I shortly overview the elastic-plastic model 
used in our study and description the resulting nonlinear finite 
component problem to be resolved. Later, in Section 5, the 
affiliation between the topology improvement problem and 
the nonlinear material model will be made. 

The main purpose of this study is to optimize the 
distribution of 2 materials during a given domain, taking the 
various nonlinear behavior of each materials under 
consideration. The most plan is to represent the elastic-plastic 
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response of each materials using one generic yield perform 
that varies in step with the worth of the design variable. For 
this purpose, I utilize the Drucker-Prager yield criteria. 
Certainly selections of material properties, the Drucker-Prager 
yield perform can model the behavior of materials that are 
abundant stronger in compression than in tension, like soils, 
rock or plain concrete. Moreover, the von Mises yield 
criterion that is wide used for metals (having equal strength in 
tension and compression) may be seen as a specific case of the 
Drucker-Prager criterion. 

In the following, I show the governing equations of the 
elastic-plastic model, resulting in the local organic problem to 
be resolved on a Gauss-point level. I follow classical rate-
independent plasticity formulations. The Drucker-Prager yield 
perform may be expressed as; 

 

Where J2 is the second invariant of the deviatory stress 
tensor and I1is the first invariant of the stress tensor. αis a 
material property and σyis the yield stress in uniaxial tension, 
both functions of the internal hardening parameter k 
according to some hardening functions. The expression√3J2 
is usually defined as the von Mises stress or equivalent stress. 
When α= 0, Igain the von Mises yield criteria. Isuppose 
simple isotropic hardening rules; 

 

Where σ0
y is the initial uniaxial yield stress, E is Young's 

modulus and His a constant, typically in the order of 10-2. The 
equations(1) and (2)are not certainly suitable for precise 
modeling of concrete but do not affect the ability to catch the 
most important failure in concrete that is failure in tension. I 
suppose an associative flow rule and a simple relation 
between the hardening parameter and the rate of the plastic 
flow; 

(3) 

Where ⋵pl is the plastic strain tensor and the scalar λ is 
usually referred to as the plastic multiplier. The equation(3) 
does not strictly represent hardening mechanisms in metals. 
Nevertheless, it is correct enough for the aim of the current 
study, since post-yielding response of the steel phase should 
not have an effect on the optimal select of material. 

Throughout this article, I follow the framework described 
by Michalis et al. for nonlinear finite element analysis and 

adjoin sensitivity analysis, where the elastic-plastic nonlinear 
analysis is seen as a transient, nonlinear coupled problem. In 
the coupled process, for every increment n in the transient 
analysis, Idefine the unknowns un(displacements) and vn 
(stresses and plastic multipliers) that satisfy the residual 
equations; 

(4) 

Where Rn = 0 is satisfied at the global level and Hn = 0 is 
satisfied at each Gauss point. The transient, coupled and 
nonlinear system of equations is uncoupled by treating the 
response v as a function of the response u. When solving the 
residual equations for the n-th “time” increment, the 
responses un-1 and vn-1 are known from the previous converged 
increment. The independent response un is found by an 
iterative prediction correction procedure in the global level, 
while for each iterative step the dependent response vn(un) is 
found by an inner iterative loop. The responses un and its 
dependent vn are corrected until Eq. (4) is stashed to sufficient 
accuracy. This procedure is repeated for all N increments. 

Neglecting body forces, Rn is defined as the difference 
between external and internal forces and depends explicitly 
only on vn. 

 

Where B is the standard strain displacement matrix in the 
context of finite element procedures. The internal, Gauss-
point level variables vn are defined as; 

 

Where σn are the stresses and λn is the plastic multiplier. 
Furthermore, the residual Hn is defined as the collection of 2 
incremental residuals; 

 

(5) 

Here, the primary equation equates total, elastic and 
plastic strains and also the second represents the need that in 
plastic response the stress state satisfies the yield condition. 
Just in case an elastic step is expected by the trial state, then 
no plastic flow happens and λn= λn-1. Thus the primary 
equation is satisfied trivially by the elastic stress-strain 
relationship and also the second equation will be forgotten. 

(1) 
(2) 
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The elastic-plastic problem is path-dependent naturally, which 
means that the evolution of plastic strains underneath a 
particular load intensity depends on the history of plastic 
straining and can't be computed properly in one load stage. In 
observe, this suggests that the FE analysis should be resolved 
incrementally. The default choice for many nonlinear 
solvers is to use load management, which means that the 
whole load is split into a particular variety of increments.

Then for every increment, this stress and st
needed for the solution of the local elastic-
equivalent to following load step. In some cases,
modify to displacement management, for example once a tiny 
low addition to the load causes an oversized extra 
displacement or once limit points are encountered. Within the 
context of optimum design, a fixed load intensity throughout 
the optimization method might cause difficulties in resolution 
the nonlinear analysis equations for intermediate designs that 
are terribly versatile. 

From this point of view, using displacement management for 
the nonlinear analysis is preferred. This suggests that the 
displacement at a specific degree of freedom is prescribed to a 
particular value for all style cycles. Selecting an accepta
price is possible if the designer has some information relating 
to the expected deformation, and may even be seen as the 
simplest way of imposing a needed detection at a particular 
purpose. Displacement management was used additionally in 
previous studies relating to topology optimization of 
plastic structures. 

For these reasons I chiefly use displacement management and 
corresponding objective functions during this study. Then the 
worldwide residual equation (4) takes the form;

Where θn is the (unknown) load factor in the 
increment and f is a constant reference load vector
zero entries only at loaded degrees of freedom. When solving 
the combined equation system for each increment, a single 
displacement has a prescribed value and the rest, as 
the corresponding load factor θn, are 
equilibrium. 

III. PROBLEM FORMULATION

For the aim of optimizing the layout of reinforced concrete 
structures, I follow the material distribution 
topological design together with the SIMP 
Material with Penalization) interpolation scheme. The 
idea is to interpolate the nonlinear behavior of the 
materials using the density variables from the topology 
optimization problem. The interpolation of the elastic 
modulus is identical to that utilized in standard, linear elastic 
topology optimization; 
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Where ρe is the density design variable 
specific finite element e. Interpolation of the
response is achieved by adding a dependency on the design 
variable ρ to the yield function. 

Following a SIMP type process
functions α(ρe) and σy(ρe) are given by;

Where ραand ρσy are penalization factors for 
respectively. These interpolations imply that the
of one material is obtained by choosing 
αmax and σ0

y= σ0
y, min, and the second yield surface is obtained 

by ρe = 1, meaning α = αminand σ0
y= 

 As above, the particular case 
plastic response of the second material is governed by the von
Mises yield criterion. By setting also 
actual model of steel is obtained for 

In Figure 1, the interpolation of the yield surfaces is 
demonstrated, for 2 materials resembling steel and

Figure 1: Demonstrative example of the interpolation 
surfaces, presented in 2D principal stress space. The “Hybrid” surface 
represents the behavior of an artificial mixture, corresponding to an 

intermediate density in topology optimization.
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the second yield surface is obtained 
= σ0

y, max. 

particular case αmin= 0 means that the 
plastic response of the second material is governed by the von 
Mises yield criterion. By setting also σ0

y, max= σ0
y,steel an 

actual model of steel is obtained for ρe = 1. 

Figure 1, the interpolation of the yield surfaces is 
materials resembling steel and concrete. 

 
Figure 1: Demonstrative example of the interpolation between2 yield 

surfaces, presented in 2D principal stress space. The “Hybrid” surface 
epresents the behavior of an artificial mixture, corresponding to an 

intermediate density in topology optimization. 

(7) 
 
(8) 
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In order to near optimal strut-and-tie designs, I extend this 
interpolation so it accommodates also void regions. I add 
another design variable x for each finite element. Void regions 
are represented by x = 0 and solid regions are represented by x 
= 1. Within the solid regions, the value of ρ determines the 
distribution of the 2 candidate materials. This leads to the 
following interpolation functions, replacing Eqs. (5), (6), (7), 
(8). 

 

Where ρEx, ραx and ρσx are penalization factors for x. In 
practice, one may choose to use the same penalty factors for 
both design variables, x and ρ. 

In this article, I focus mainly on one demonstrative class 
of objective functions. The aim is to find the stiffest structural 
layouts given certain amounts of available material. When 
only linear elastic response is considered, the corresponding 
objective is the widely used minimum compliance problem. 

When nonlinear response is taken into account, one may 
define several different objectives that are related to the 
maximization of the structural stiffness. Since displacement 
control is preferred in the nonlinear FE analysis, a possible 
equivalent to minimizing compliance in linear elasticity is 
maximizing the end compliance for a given prescribed 
displacement. In other words, the objective is to maximize the 
magnitude of the load that corresponds to a certain prescribed 
displacement at a particular degree of freedom. 

Assuming the analysis problem is solved in N increments, 
the optimization problem of distributing2 materials and void 
in the design domain can be stated as follows: 

 

(13) 

Where V1 is the total available volume of material, V2 is 
the available volume of the material whose properties 
correspond to ρe = 1 (V2≤ V1) and xmin is a positive lower 
bound used in order to avoid singularity of the stiffness 

matrix. The problem of distributing 2 materials with no voids 
can be seen as a particular case of this formulation. 

As mentioned earlier, the design sensitivities are computed 
by the adjoin method, following the framework for transient, 
nonlinear coupled problems described by Michalaras et al. To 
the best of the author’s knowledge, this is the first 
implementation of this framework in topology optimization of 
structures with material nonlinearities. 

Furthermore, it is presumably the first sensitivity analysis 
for topology optimization of structures with material 
nonlinearities where no simplifying assumptions are made. 
The procedure for sensitivity analysis is described here only 
for the 2 material and void equation(13) since the 2-material 
problem can easily be deduced from it. I begin by forming the 
augmented objective function ^c(ρ). 

 

Where λn and γn are the adjoin vectors to be found for all 
increments n= 1, …, N.I assume the initial responses u0, v0do 
not depend on the design variables. Furthermore, it can be 
observed that the objective function and the nonlinear 
equation systems Rn (n = 1, …, N) do not depend explicitly 
on the design variables. Therefore, the explicit terms in the 
derivative of the augmented objective with respect to the 
design variables are; 

 

The adjoin vectors n (n = 1, …, N) are computed on a 
Gauss point level by a backward incremental procedure, 
which is needed due to path dependency of the elastic-plastic 
response. The backward procedure consists of the collection 
of equation systems resulting from the requirement that all 
implicit derivatives of the design variables will vanish.  

For performing the backwards-incremental sensitivity 
analysis, the derivatives of the global and local residuals with 
respect to the analysis variables are required. These are given 
in this section for the elastic-plastic model utilized in the 
current study. In particular, I consider a plane stress situation, 
meaning the stresses and strains are collected in a vector with 
3 entries: α= [α11, α22, α12]

 T and ε = [ε11, ε22, ε12]
 T. The 

derivative of the global residual is independent of the specific 
material model employed and is given by; 

(9) 

(10) 

(11) 

(12) 
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Where B is the standard strain-displacement matrix; w is 
the Gauss point Light for numerical integration; and J is the 
determinant of the Jacobian at the Gauss point. For the 
nonlinear material model described in Section 5, the 
derivatives of the local residual are; 

 

Where the derivative of the yield function with respect to the 
stress components is; 

 

In actual implementation, the derivatives of the local 
residuals Hn and Hn+1 should maintain consistency with 
respect to the analysis. This means that some rows and 
columns should be disregarded in case of elastic loading or 
unloading. For example, if increment n is elastic, then I have

and . 

Finally, computing the derivatives requires 
adding the dependency on the design variables to Eq. (4) and 
differentiating with respect to xe and ρe. This leads to;  

 

The above derivatives can be easily computed using the 
relations given in Eqs. (9), (10), (11) & (12). 

 

 

Remarks regarding sensitivity analysis for displacement-
controlled analysis: 
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The objective function utilized in the problem 
formulations above is appropriate for stiffness maximization 
only in the case of a single point load. Applying a distributed 
load while prescribing a single displacement poses a problem 
when defining a proper objective for stiffness maximization. 
As discussed previously, maximizing the worldwide end 

compliance  may result in a structure that is very stiff 
with respect to bearing the load at the prescribed DOF but 
very flexible with respect to all other loads. Therefore when a 
distributed load is set, the objective is defined as minimizing 

the end compliance as if the analysis is load-
controlled and as if the load intensity is constant throughout 
the optimization. The resulting hybrid procedure combines the 
advantages of both load and displacement control. On the one 
hand, the analysis is more stable numerically and is more 
likely to converge when the structural layout is relatively 
“soft”. 

On the other hand, the objective is well-defined and 
should lead to the best worldwide stiffness with respect to all 
the applied loads. Practically, this can be seen as a load-
controlled procedure, just that the load intensity varies 
throughout the design process to _t the prescribed 
displacement. Moreover, in the sensitivity analysis it is 
assumed that the solution was obtained using load control, 
which leads to a more straightforward computational 
procedure.  

IV. EXAMPLES 

In this part, Ishowmany results obtained when 
implementing the computational approach described in this 
article. The aim is to demonstrate the abilities and potential of 
our approach and to gain insight regarding implementation 
aspects. Therefore, as preliminary examples I consider 
relatively small scale 2dimensional problems with no self-
Light. Extending to 3 dimensional models and incorporating 
more realistic loading conditions are among the goals of 
future work. 

The examples presented point to each the distribution of 
concrete and steel as well as to the distribution of concrete, 
steel and void (13). The material parameters resemble real 
values corresponding to steel and concrete, see Table 1. For 
computing αmax andσ0

y, min, both corresponding to the concrete 
phase, it was assumed that the strength of concrete in 
compression is ten times higher than in tension. All test cases 
Ire solved using a 2D finite element mesh consisting of 
square, bi-linear plane stress elements. 

The optimization was performed by a nonlinear 
optimization program based on the Method of Moving 
Asymptotes - MMA. In order to obtain regularized designs 
and to avoid checkerboard patterns, a density filter was 
applied. 

 

VI. OPTIMIZED BEAMS SUBJECT TO DISTRIBUTED 
LOADS 

In these example problems, I again address the maximum 
end compliance design of beams. I consider slenderer beams 
with loads evenly distributed along the length, see Figure 2(a) 
for the setup of a simply supported beam and Figure 3(a) for 
the setup of a cantilevered beam.  

Due to the larger length-to-height ratio, I expect bending 
action to be much more dominant than in the previous 
example. The models of the symmetric halves are discretized 
with 160 ×40 and 240 ×40FE meshes respectively the volume 
fraction is set to 0:1 for both cases, and the load is modeled as 
10 equally spaced point loads on one half of the beam. 

For the simply supported beam, I apply a specific 
displacement directed downwards at the mid-point of the top 
fiber, with a magnitude of δ = 0:005. For the cantilevered 
beam, the specific displacement is at the top of the free edge 
and the magnitude is δ= 0:001. 

Examining the layouts obtained with distributed loads, it 
can be seen that the presented procedure enables a clear 
distinction between tensile and compressive stresses. In the 
simply supported beam, steel reinforcement is placed in the 
bottom fiber where tensile stresses appear due to bending, and 
in the vicinity of concentrated forces. Near the supports, the 
bottom fiber reinforcement is bent upwards. This improves the 
structure's resistance to shear failure, which is dominant in 
these regions. In the cantilevered beam, the same principals 
are followed, so steel is added also to the top fiber above the 
supports. This reinforcement is bent in both directions 
according to the varying dominance of shear failure in 
comparison to bending failure. 

At the end, it can be observed that small portions of steel 
are used also to reinforce the support regions and to a lesser 
extent under loading points. 
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Figure 2: Maximum end-compliance of a simply supported beam subject to a distributed load. 

Black = steel, white = concrete. Steel consists of 10% of the total volume. 

 

 

Figure 3: Maximum end-compliance of a cantilevered beam subject to a distributed load. 

Black = steel, white = concrete. Steel consists of 10% of the total volume. 

 
Optimized short cantilever: 

In this example problem, the aimed procedure is applied 
for designing the reinforcement in a short cantilever. The 
design domain is a square supported at 2 corners on the left 
side and loaded with a prescribed displacement directed 
downwards at the opposite bottom corner. The model is 
discretized with a 100×100 FE mesh. The objective is to 

maximize the end-compliance, and Ishow2 results: one of 
concrete-steel distribution and another of concrete-steel-void 
distribution. For the 2 material design, the steel volume 
fraction is 0:2. When void is considered as Ill, then the total 
volume fraction is0:4 and the steel volume fraction is 0:1. The 
specific displacements are set to δ= 0:002 and δ= 
0:001respectively. The penalty factors are set to the value of 
3:0 and the filter radius is r= 0:015 for all design iterations. 
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Figure 4: Maximum end-compliance of a short cantilever. 

In 2 cases, steel is used mainly for a cable-like member in 
tension, transferring the load to the upper support. This cable 
is then supported by either a continuous concrete domain 
(when no voids are possible) or by 2 compressed concrete 
bars, see Figures 4(a), 4(b). 

This again demonstrates the ability of the process to 
differentiate between structural elements in tension and in 
compression and to select the appropriate material for each 
type. The layout obtained when distributing steel, concrete 
and void resembles strut-and-tie models that are greatly used 
in practical analysis and design of reinforced concrete. 

As observed in previous models, steel might be used also 
for stiffening support regions. In the short cantilever, this is 
the case mainly for the 2 material problem with no voids. To a 
lesser extent, this is observed also in the result of the concrete-
steel-void distribution. 

VII. DISCUSSION 

The resulting optimized layouts clearly demonstrate the 
potential of this approach. Once distributing steel inside a 
concrete beam, the location of reinforcement resembles 
ancient design and agrees with common engineering 
information. Once distributing concrete, steel and void, it's 
shown that optimized strut-and-tie models are generated. 
These may be used for many purposes: first; to supply the 
engineer an improved initial design before the detailed design 
stage. Second, to challenge ancient apply and attain a lot of 
economical design of reinforced concrete structures by 
suggesting non-traditional forms and shapes. Third, to reduce 
weight and concrete production, by utilizing Light weight 

concrete within the “void” regions where no strength is 
needed. 

Future work can target additional realistic modeling. With 
reference to loading conditions, it's necessary to consider also 
self-weight and multiple load cases. Another vital issue is that 
the constraint on the amount of reinforcing material: in apply, 
the relative volume of steel rarely exceeds 1%. This needs 
rather more refined FE models in which thin steel bars may be 
properly accomplished. Another vital extension is to consider 
strain softening within the concrete part. Consequently, 
transferring tension forces in concrete will be even less 
desirable, which means that a lot of realistic designs may be 
recommended. At the end, the introduction of alternative 
objective functions will be explored. 
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