
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VIII, Issue II, February 2019 | ISSN 2278-2540

www.rsisinternational.org Page 64

Slice Testing With Neural Network
Mahesh Kumar Tiwari

1
, Rinku Raheja

2

1, 2
Assistant Professor, Computer Science Department, National P.G. College, Lucknow, U.P, India

Abstract: - Slice Testing is a testing technique in which a program

is divided into slices in order to identify the segments that will be

affected by any change or to identify which set of statement

(grouped as slices) will be executed at a particular instant. In this

paper we have tried to mix the concept of slice testing with

Neural Network using Object Oriented Programming.

In this we will take execution time of each slice as the

weight factor in the evaluation of net input. This allows us to

identify the overall architecture of the program and helps in

evaluating the overall performance and dependencies of the

system. Here, each slice will act as a node of the network for

which net input will be calculated. We are focused on

implementing this technique in an Object Oriented Program as

nowadays all of the software development is based on the concept

of Object Oriented Programming.

Keywords: - Slicing, Static Slicing, Forward Slicing, Backward

Slicing, Dynamic Slicing, Object Oriented Programming.

I. INTRODUCTION

his paper is based on the concepts of Slicing and

Artificial Neural Networks both these fields have evolved

over the time in various ways. Here we have described what

Slice based testing and Artificial Neural network is and how

these concepts can be merged and used to calculate the

performance of the program. Slices as described by Weiser

are created on the basis of Slicing Criteria which is of the

form <P,V> where P is the point of interest of the program

and V is the variable. A slice consists of all the statements in a

program which are affected by the defined slicing criteria. A

slice can be computed by two techniques, forward slicing and

backward slicing. Once the slices are determined we calculate

the execution time of slices with help of Junit. With this time

we will calculate the net input for the whole program. Now let

us look into the details of each topic.

II. PROGRAM SLICING

As mentioned that this technique has evolved in many ways

so there are many ways which can be used to get the program

slices. Some of these are mentioned below:

Forward Slicing- A forward slice contains the set of

statements that might get affected by the slicing criteria i.e., it

provides answer to the following question “which statements

will be affected by the slicing criterion?”

Backward Slicing- A backward slice contains all parts of the

program that might directly or indirectly affect the slicing

criterion. Thus a static backward slice provides the answer to

the question: “which statements affect the slicing criterion?”

Static Slicing- A static slice contains all the statements that

might directly or indirectly affect the slicing criteria. The size

of slice is large in comparison to Dynamically sliced program.

There are no assumptions made on input while slicing.

Dynamic Slicing- Here the slicing criteria is defined as <I, P,

V> where I is the input, P is the point of interest and V is the

variable for which we wish to monitor the program. Here we

include only those statements that directly affect the program.

Static and Dynamic slicing are performed in combination with

Forward and Backward slicing. As clear by the definitions

Dynamic Slicing is more suitable for Debugging Object

oriented Programs.

Example of Backward Static and Backward Dynamic is

shown in Figure-1 and Figure-2 for a C++ program.

1. cin>>n;

2. cout<<n;

3. int a=2;

4. if (n>2)

5. a=4;

6. else

7. a=6;

8. cout<<a;

The above figure shows Backward Static Slicing with

Criteria<8, a> and the figure below shows Backward

Dynamic Slicing with Criteria<3, 8, a>.

1. cin>>n;

2. cout<<n;

3. int a=2;

4. if (n>2)

5. a=4;

6. else

7. a=6;

8. cout<<a;

III. ARTIFICIAL NEURAL NETWORK

Artificial Neural Network ANN is an efficient computing

system whose central theme is borrowed from the analogy of

biological neural networks. ANNs are also named as

“artificial neural systems,” or “parallel distributed processing

systems,” or “connectionist systems.” ANN acquires a large

collection of units that are interconnected in some pattern to

allow communication between the units. These units, also

T

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VIII, Issue II, February 2019 | ISSN 2278-2540

www.rsisinternational.org Page 65

referred to as nodes or neurons, are simple processors which

operate in parallel.

Every neuron is connected with other neuron through a

connection link. Each connection link is associated with a

weight that has information about the input signal. This is the

most useful information for neurons to solve a particular

problem because the weight usually excites or inhibits the

signal that is being communicated. Each neuron has an

internal state, which is called an activation signal. Output

signals, which are produced after combining the input signals

and activation rule, may be sent to other units.

Model of Artificial Neural Network

The following diagram shows the structure of an Artificial

Neural Network .

For this model net input can be calculated as follows –

yin = x1.w1 + x2.w2 + x3.w3 … xm.wm

i.e., Net input yin=∑ mixi.wi

IV. SLICING AND UNIT TESTING

Now we are simply going to analyze the program in Java by

creating slices of the program and calculating its execution

time.

Consider the following program which implements four

methods add(), multiply(), subtract(), divide.

1. class Methods

2. {

3. public int add(int a, int b)

4. { return a+b; }

5. public int multiply(int a,int b)

6. { return a*b; }

7. public int subtract(int a,int b)

8. { return a-b; }

9. //Division of whole no.s

10. public int divide(int a, int b)

11. { if (b>0 && a>=0)

12. return a/b;

13. else

14. return -1;

15. }}

16. public class Operations {

17. public static void main(String[] args)

18. { Methods m=new Methods();

19. System.out.println("Sum:"+m.add(10,12));

20. System.out.println("Product:"+m.multiply(100,2));

21. System.out.println("Subtraction:"+m.subtract(48,

60));

22. System.out.println("Quotient:"+m.divide(48, 2));

23. }

24. }

Figure - Sample Code

Slices for the above program based on the

1. class Methods

2. {

3. public int add(int a, int b)

4. { return a+b; }

5. public int multiply(int a,int b)

6. { return a*b; }

7. public int subtract(int a,int b)

8. { return a-b; }

9. //Division of whole no.s

10. public int divide(int a, int b)

11. { if (b>0 && a>=0)

12. return a/b;

13. else

14. return -1;

15. }}

16. public class Operations {

17. public static void main(String[] args)

18. { Methods m=new Methods();

19. System.out.println("Sum:"+m.add(10,12));

20. System.out.println("Product:"+m.multiply(100,2));

21. System.out.println("Subtraction:"+m.subtract(48,

60));

22. System.out.println("Quotient:"+m.divide(48, 2));

23. }

24. }

Slicing Criterion: < [10, 12], 19, add () >

Figure - S1

 different slicing criteria are shown below:

1. class Methods

2. {

3. public int add(int a, int b)

4. { return a+b; }

5. public int multiply(int a,int b)

6. { return a*b; }

7. public int subtract(int a,int b)

8. { return a-b; }

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VIII, Issue II, February 2019 | ISSN 2278-2540

www.rsisinternational.org Page 66

9. //Division of whole no.s

10. public int divide(int a, int b)

11. { if (b>0 && a>=0)

12. return a/b;

13. else

14. return -1;

15. }}

16. public class Operations {

17. public static void main(String[] args)

18. { Methods m=new Methods();

19. System.out.println("Sum:"+m.add(10,12));

20. System.out.println("Product:"+m.multiply(100,2));

21. System.out.println("Subtraction:"+m.subtract(48,

60));

22. System.out.println("Quotient:"+m.divide(48, 2));

23. }

24. }

Slicing Criterion: <[100,2],20,multiply ()>

Figure – S2

1. class Methods

2. {

3. public int add(int a, int b)

4. { return a+b; }

5. public int multiply(int a,int b)

6. { return a*b; }

7. public int subtract(int a,int b)

8. { return a-b; }

9. //Division of whole no.s

10. public int divide(int a, int b)

11. { if (b>0 && a>=0)

12. return a/b;

13. else

14. return -1;

15. }}

16. public class Operations {

17. public static void main(String[] args)

18. { Methods m=new Methods();

19. System.out.println("Sum:"+m.add(10,12));

20. System.out.println("Product:"+m.multiply(100,2));

21. System.out.println("Subtraction:"+m.subtract(48,

60));

22. System.out.println("Quotient:"+m.divide(48, 2));

23. }

24. }

Slicing Criterion:<[48,60],21,subtract()>

Figure – S3

1. class Methods

2. {

3. public int add(int a, int b)

4. { return a+b; }

5. public int multiply(int a,int b)

6. { return a*b; }

7. public int subtract(int a,int b)

8. { return a-b; }

9. //Division of whole no.s

10. public int divide(int a, int b)

11. { if (b>0 && a>=0)

12. return a/b;

13. else

14. return -1;

15. }}

16. public class Operations {

17. public static void main(String[] args)

18. { Methods m=new Methods();

19. System.out.println("Sum:"+m.add(10,12));

20. System.out.println("Product:"+m.multiply(100,2));

21. System.out.println("Subtraction:"+m.subtract(48,

60));

22. System.out.println("Quotient:"+m.divide(48, 2));

23. }

24. }

Slicing Criterion:<[48,2],22,divide()>

Figure – S4

The test file prepared to test these slices has been created and

is shown in the figures below:

@Test

 public void testAdd() {

 System.out.println("add");

 int a = 12;

 int b = 32;

 Methods instance = new Methods();

 int expResult = 44;

 int result = instance.add(a, b);

 assertEquals(expResult, result);

 }

Figure Test Method for add()

@Test

 public void testMultiply() {

 System.out.println("multiply");

 int a = 100;

 int b = 2;

 Methods instance = new Methods();

 int expResult = 200;

 int result = instance.multiply(a, b);

 assertEquals(expResult, result);

 }

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VIII, Issue II, February 2019 | ISSN 2278-2540

www.rsisinternational.org Page 67

Figure Test Method for multiply()

@Test

 public void testSubtract() {

 System.out.println("subtract");

 int a = 20;

 int b = 5;

 Methods instance = new Methods();

 int expResult = 15;

 int result = instance.subtract(a, b);

 assertEquals(expResult, result);

 }

Figure Test Method for subtract()

@Test

 public void testDivide() {

 System.out.println("divide");

 int a = 6;

 int b = 2;

 Methods instance = new Methods();

 int expResult = 3;

 int result = instance.divide(a, b);

 assertEquals(expResult, result);

 }

Figure Test Method for divide()

Now the execution time calculated for each slice (S1,

S2, S3, S4) using Junit are 0.088s, 0.085 s, 0.077 s, 0.078 s,

respectively. Also, total time taken to test all the slices

altogether is 0.117 s.

Figure Test result for S1

Figure Test result for S2

Figure Test result for S3

Figure Test result for S4

Note- These figures may wary as per the system.

V. IMPLEMENTING NEURAL NETWORK CONCEPT

As stated earlier

yin = x1.w1 + x2.w2 + x3.w3 … xm.wm

i.e., Net input yin=∑ mixi.wi

Here, x1,x2,… are the inputs and w1, w2, w3,… are the

weights(execution time).

So, for the above program

yin=S1*0.088+S2*0.085+S3*0.077+S4*0.78

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VIII, Issue II, February 2019 | ISSN 2278-2540

www.rsisinternational.org Page 68

VI. CONCLUSION AND FUTURE SCOPE

So, with the above proposed methods we can easily get the

picture of an Object Oriented Program. This gives us the

capability to derive numerical facts which provide us

information about the performance of an Object Oriented

Program. Here, we can also see the capability of Slice Testing

in reducing the redundancy while creating independent slices.

 In future we can show the implementation of the above

method with inheritance and other Object Oriented

Programming concepts. Further, instead of taking execution

time as weight factor we can take lines of code (LOC) or

some other factor as weight. Also, the implementation of yin

could be used in some other testing technique enhancing the

capabilities.

REFERENCES

[1] Durga Prasad Mohapatra, Rajib Mall and Rajeev Kumar1
Department of Computer Science and Engineering Indian Institute

of Technology Kharagpur Kharagpur, WB 721 302, India. “An

Overview of Slicing Techniques for Object-Oriented Programs”.
[2] Jianjun Zhao, ”Dynamic Slicing of Object Oriented Program”.

[3] N.Sasirekha, A. Edwin Robert and Dr. M.Hemalatha.

”PROGRAM SLICING TECHNIQUES AND ITS
APPLICATIONS”, International Journal of Software Engineering

& Applications (IJSEA), Vol.2, No.3, July 2011.

[4] Sonam Agarwal and Arun Prakash Agarwal. “Program Slicing
using Test Cases”, International Journal of Computer Applications

(0975 – 8887) Volume 60– No.10, December 2012 .

[5] Iqbaldeep Kaur, Navneet Kaur, Amandeep Ummat, Jaspreet Kaur,
Navjot Kaur Dept. of CSE, Chandigarh Engineering College,

Landran, Punjab, India. “Research Paper on Object Oriented

Software Engineering”, IJCST Vol. 7, ISSUE 4, OCT - DEC
2016.

[6] Zeping Yu and Gongshen Liu, School of Electronic Information

and Electrical Engineering Shanghai Jiao Tong University. “Sliced
Recurrent Neural Networks”.

