Mathematical Model for the Prediction of the Compressive Strength Characteristics of Concrete Made With Sugar Cane Bagasse Ash (SCBA)

Ikechukwu Etienne Umeonyiagu
Department of Civil Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria

Abstract

This research examined the use of sugarcane bagasse ash (SCBA) as a supplementary material in concrete. The coarse aggregates were granite chippings from Abakaliki, Nigeria and fine aggregates from Amansea River, also in Nigeria. The sugarcane bagasse was from a Sugar Processing Plant, also in Nigeria. The aggregates were tested for physical and mechanical properties based on BS 812: Part 2 \& Part 3:1975. A total number of 90 cubes were made, cured and tested according to BS 1881: Part 108; BS 1881: Part 111 \& BS 1881: Part 116. Scheffe's $(5,2)$ lattice polynomial was used to develop a mathematical model for the optimization of the compressive strength of the sugarcane bagasse concrete at $28^{\text {th }}$ day. The mathematical model developed was $\hat{\mathbf{Y}}=22.13 \mathrm{X}_{1}\left(2 \mathrm{X}_{1}-1\right)+29.08 \mathrm{X}_{\mathbf{2}}\left(\mathbf{2} \mathrm{X}_{\mathbf{2}}-1\right)+\mathbf{2 2 . 5 2}$ $\mathrm{X}_{3}\left(2 \mathrm{X}_{3}-1\right)+15.59 \mathrm{X}_{4}\left(2 \mathrm{X}_{4}-1\right)+15.15 \mathrm{X}_{5}\left(2 \mathrm{X}_{5}-1\right)+98.68 \mathrm{X}_{1} \mathrm{X}_{2}+83.76$ $\mathbf{X}_{1} \mathrm{X}_{3}+72.64 \mathrm{X}_{1} \mathrm{X}_{4}+91.44 \mathrm{X}_{1} \mathrm{X}_{5}+97.68 \mathrm{X}_{2} \mathrm{X}_{3}$ $+54.68 X_{2} X_{4}+57.12 X_{2} X_{5}+\mathbf{6 8 . 1 6 6 8} X_{3} X_{4}+\mathbf{8 0 . 0 4} X_{3} X_{5}+58.88 X_{4} X_{5}$ The student's t-test and the Fisher test were used to test the adequacy of this model. The strengths predicted by the model were in complete agreement with the experimentally obtained values and the null hypothesis was satisfied.

Keywords: sugarcane bagasse, aggregate, model, Fisher's test, granite

I. INTRODUCTION

Concrete is composed mainly of four materials, namely, cement, fine aggregate, coarse aggregate and water, and an additional material, known as an admixture, is sometimes added to modify certain of its properties [1]. Cement is the chemically active constituent but its reactivity is only brought into effect on mixing with water. The aggregate plays no part in chemical reactions but its usefulness arises because it is an economical filler material with good resistance to volume changes which take place within the concrete after mixing, and it improves the durability of the concrete [2]. It is important that concrete should have certain specified properties, and it is to be produced as economically as possible - a basic requirement in engineering [3]. Hence, there is need to optimize concrete properties such as strength [4]. Optimization is the determination of the optimal (maximum or minimum) value of a given function called the objective function, subject to a set of stated restrictions, or constraints, placed on the variables concerned [5]. This work
optimized the use of SCBA as a supplementary material in concrete.

A. The Scheffe's $(5,2)$ Lattice Polynomial

Simplex is the structural representation of the line or planes joining the assumed positions of the constituent materials (atoms) of a mixture [1]. Scheffe [6] considered experiments with mixtures of which the property studied depended on the proportions of the components present but not on the quantity of the mixture [4]. If a mixture has a total of q components and x_{i} be the proportion of the ith component in the mixture such that $X_{i} \geq 0(\mathrm{i}=1,2 \ldots \mathrm{q})$, then
$X_{1}+X_{2}+X_{3}+$ \qquad . $X_{q}=1$
For a 5-component mixture, Equation (1) becomes
$X_{1}+X_{2}+X_{3}+X_{4}+X_{5}=1$
Scheffe [6] described mixture properties by reduced polynomials obtainable from Equation (3):
$\hat{Y}=b_{0}+\Sigma b_{i} X_{i}+\sum b_{i j} X_{i} X_{j}+\Sigma b_{i j k} X_{i} X_{j} X_{k}+\ldots \ldots \ldots . .+e$
Where $b_{i}, b_{i j}$ and $\mathrm{b}_{i j k}$ are constant coefficients; X_{i}, X_{j} and X_{k} are the pseudo components; and e is the random error term. Substituting the values of i and j will give

$$
\begin{align*}
& \hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+b_{4} X_{4}+b_{5} X_{5} \\
& +b_{12} X_{1} X_{2}+b_{13} X_{1} X_{3}+b_{14} X_{1} X_{4}+b_{15} X_{1} X_{5}+ \\
& b_{23} X_{2} X_{3}+b_{24} X_{2} X_{4}+b_{25} X_{2} X_{5}+b_{34} X_{3} X_{4}+ \\
& b_{35} X_{3} X_{5}+b_{45} X_{4} X_{5}+b_{11} X_{1}{ }^{2}+b_{22} X_{2}{ }^{2}+b_{33} X_{3}{ }^{2} \\
& +b_{44} X_{4}{ }^{2}+b_{55} X_{5}{ }^{2}+e \tag{4}
\end{align*}
$$

Multiplying Eqn.(2) by b_{0} and multiplying the outcome by X_{1}, X_{2}, X_{3}, X_{4} and X_{5} in turn and substituting into Eqn. (4), we have:

```
Y}=\mp@subsup{b}{0}{}\mp@subsup{X}{1}{}+\mp@subsup{b}{0}{}\mp@subsup{X}{2}{}+\mp@subsup{b}{0}{}\mp@subsup{X}{3}{}+\mp@subsup{b}{0}{}\mp@subsup{X}{4}{}+\mp@subsup{b}{0}{}\mp@subsup{X}{5}{}+\mp@subsup{b}{1}{}\mp@subsup{X}{1}{}+\mp@subsup{b}{2}{}\mp@subsup{X}{2}{}+\mp@subsup{b}{3}{}\mp@subsup{X}{3}{}
b}\mp@subsup{4}{4}{}\mp@subsup{X}{4}{}+\mp@subsup{b}{5}{}\mp@subsup{X}{5}{}+\mp@subsup{b}{12}{}\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}+\mp@subsup{b}{13}{}\mp@subsup{X}{1}{}\mp@subsup{X}{3}{}+\mp@subsup{b}{14}{}\mp@subsup{X}{1}{}\mp@subsup{X}{4}{}+\mp@subsup{b}{15}{}\mp@subsup{X}{1}{}\mp@subsup{X}{5}{}
b}\mp@subsup{b}{23}{}\mp@subsup{X}{2}{}\mp@subsup{X}{3}{}+\mp@subsup{b}{24}{}\mp@subsup{X}{2}{}\mp@subsup{X}{4}{}+\mp@subsup{b}{25}{}\mp@subsup{X}{2}{}\mp@subsup{X}{5}{}+\mp@subsup{b}{34}{}\mp@subsup{X}{3}{}\mp@subsup{X}{4}{}+\mp@subsup{b}{35}{}\mp@subsup{X}{3}{}\mp@subsup{X}{5}{}+\mp@subsup{b}{45}{}\mp@subsup{X}{4}{}\mp@subsup{X}{5}{}
b}\mp@subsup{b}{11}{}(\mp@subsup{X}{1}{}-\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}-\mp@subsup{X}{1}{}\mp@subsup{X}{3}{}-\mp@subsup{X}{1}{}\mp@subsup{X}{4}{}+\mp@subsup{X}{1}{}\mp@subsup{X}{5}{})+\mp@subsup{b}{22}{}(\mp@subsup{X}{2}{-}-\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}-\mp@subsup{X}{2}{}\mp@subsup{X}{3}{}
```


International Journal of Latest Technology in Engineering, Management \& Applied Science (IJLTEMAS) Volume VIII, Issue III, March 2019 | ISSN 2278-2540

$\left.X_{2} X_{4}+X_{2} X_{5}\right)+b_{33}\left(X_{3}-X_{1} X_{3}-X_{2} X_{3}-X_{3} X_{4}+X_{3} X_{5}\right)+b_{44}\left(X_{4}-X_{1} X_{4}\right.$
$\left.-X_{2} X_{4}-X_{3} X_{4}+X_{4} X_{5}\right)+b_{55}\left(X_{5}-X_{1} X_{5}-X_{2} X_{5}-X_{3} X_{5}+X_{4} X_{5}\right)+e$
$\left.-X_{2} X_{4}-X_{3} X_{4}+X_{4} X_{5}\right)+b_{55}\left(X_{5}-X_{1} X_{5}-X_{2} X_{5}-X_{3} X_{5}+X_{4} X_{5}\right)+e$

Re-arranging Eqn. (5), we have
$\hat{Y}=\Sigma \propto_{i} X_{i}+\sum \propto_{i j} X_{i} X_{j}$
Where $1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{q}$ respectively and
$\propto_{\mathrm{i}}=\mathrm{b}_{0}+\mathrm{b}_{\mathrm{i}}+\mathrm{b}_{\mathrm{ii}}$ and $\propto_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{i}}+\mathrm{b}_{\mathrm{ii}}$
Let the response function to the pure components $\left(\mathrm{x}_{\mathrm{i}}\right)$ be denoted by y_{i} and the response to a $1: 1$ binary mixture of components i and j be $y_{i j}$. From Eqn. 6, it can be written that
$\Sigma \propto_{i} X_{i}=\Sigma y_{i} X_{i}$
Where ($\mathrm{i}=1$ to 5)
Evaluating y_{i}, for instance gives:
$y_{i}=\alpha_{i}$
Also evaluating $y_{i \mathrm{i}}$, gives in general the equations of the form

$$
\begin{equation*}
\propto_{i j}=4 y_{i j}-2 y_{i}-2 y_{j} \tag{10}
\end{equation*}
$$

For the $(5,2)$ lattice polynomial, that is Eqn. 6 becomes:
$\hat{Y}=y_{1} X_{1}+y_{2} X_{2}+y_{3} X_{3}+y_{4} X_{4}+y_{5} X_{5}+\left(4 y_{12}-2 y_{1}-2 y_{2}\right) X_{1}$ $X_{2}+\left(4 y_{13}-2 y_{1}-2 y_{3}\right) X_{1} X_{3}+\left(4 y_{14}-2 y_{1}-2 y_{4}\right) X_{1} X_{4}+$ $\left(4 y_{15}-2 y_{1}-2 y_{5}\right) X_{1} X_{5}+\left(4 y_{23}-2 y_{2}-2 y_{3}\right) X_{2} X_{3}+\left(4 y_{24}-2 y_{2}\right.$ $\left.-2 y_{4}\right) X_{2} X_{4}+\left(4 y_{25}-2 y_{2}-2 y_{5}\right) X_{2} X_{5}+\left(4 y_{34}-2 y_{3}-2 y_{4}\right) X_{3}$ $X_{4}+\left(4 y_{35}-2 y_{3}-2 y_{5}\right) X_{3} X_{5}+\left(4 y_{45}-2 y_{4}-2 y_{5}\right) X_{4} X_{5}+e$

Expanding and factorizing Eqn.(11) gives
$\hat{Y}=y_{1} X_{1}\left(1-2 X_{2}-2 X_{3}-2 X_{4}-2 X_{5}\right)+$
$y_{2} X_{2}\left(1-2 X_{1}-2 X_{3}-2 X_{4}-2 X_{5}\right)+$
$y_{3} X_{3}\left(1-2 X_{1}-2 X_{2}-2 X_{4}-2 X_{5}\right)$
$+y_{4} X_{4}\left(1-2 X_{1}-2 X_{2}-2 X_{3}-2 X_{5}\right)+$
$y_{5} X_{5}\left(1-2 X_{1}-2 X_{2}-2 X_{3}-2 X_{4}\right)+$
$4 y_{12} X_{1} X_{2}+4 y_{13} X_{1} X_{3}+4 y_{14} X_{1} X_{4}+$
$4 y_{15} X_{1} X_{5}+4 y_{23} X_{2} X_{3}+4 y_{24} X_{2} X_{4}+$
$4 y_{25} X_{2} X_{5}+4 y_{26} X_{2} X_{6}+4 y_{34} X_{3} X_{4}+$
$4 y_{35} X_{3} X_{5}+4 y_{45} X_{4} X_{5}+e$
Multiplying Eqn. (2) by 2 and subtracting 1 from both sides of it gives
$2 X_{1}-1=1-2 X_{2}-2 X_{3}-2 X_{4}-2 X_{5}$
Similarly,
$\left.\begin{array}{l}2 X_{2}-1=1-2 X_{1}-2 X_{3}-2 X_{4}-2 X_{5} \\ 2 X_{3}-1=1-2 X_{1}-2 X_{2}-2 X_{4}-2 X_{5} \\ 2 X_{4}-1=1-2 X_{1}-2 X_{3}-2 X_{4}-2 X_{5} \\ 2 X_{5}-1=1-2 X_{1}-2 X_{2}-2 X_{3}-2 X_{4}\end{array}\right\}$
Substituting Eqns.(13) \& (14) into Eqn.(12) gives
$\hat{Y}=y_{1} X_{1}\left(2 X_{1}-1\right)+y_{2} X_{2}\left(2 X_{2}-1\right)+y_{3} X_{3}\left(2 X_{3}-1\right)$
$+y_{4} X_{4}\left(2 X_{4}-1\right)+y_{5} X_{5}\left(2 X_{5}-1\right)$
$+4 y_{12} X_{1} X_{2}+4 y_{13} X_{1} X_{3}+$
$4 y_{14} X_{1} X_{4}+4 y_{15} X_{1} X_{5}$
$+4 y_{23} X_{2} X_{3}+4 y_{24} X_{2} X_{4}+4 y_{25} X_{2} X_{5}$
$+4 y_{34} X_{3} X_{4}+4 y_{35} X_{3} X_{5}+4 y_{45} X_{4} X_{5}+e$
Eqn. (15) is the model for the optimization of a 5-component concrete mixture.

B. The Unbiased Estimate of the Unknown Variance

The unbiased estimate of the unknown variance S^{2} is given by Biyi [7],

$$
\begin{equation*}
S_{y}=\frac{\sum\left(y_{i}-y\right)^{2}}{n-1} \tag{16}
\end{equation*}
$$

If $a_{i}=X_{i}\left(2 X_{i}-1\right), a_{i j}=4 X_{i} X_{j}$; for $(1 \leq \mathrm{i} \leq \mathrm{q})$ and $(1 \leq \mathrm{i} \leq \mathrm{j}$ $\leq q)$ respectively.
Then, $\varepsilon=\Sigma a^{2}{ }_{i}+\Sigma a^{2}{ }_{i j}$
where ε is the error of the predicted values of the response.
The t-test statistic is given by [7]

$$
\begin{equation*}
t=\left(\frac{\Delta y \sqrt{n}}{S_{y}}\right) \sqrt{(1+\varepsilon)} \tag{18}
\end{equation*}
$$

Where $\Delta y=y_{0}-y_{t} ; y_{0}=$ observed value, $y_{t}=$ theoretical value; $n=$ number of replicate observations at every point; $\varepsilon=$ as defined in Eqn.(17).

C. The Fisher 's Test

The Fishers-test statistic is given by

$$
\begin{equation*}
F=\frac{S_{1}^{2}}{S_{2}^{2}} \tag{19}
\end{equation*}
$$

The values of S_{I} (lower value) and S_{2} (upper value) are calculated from Eqn. (16).

II. MATERIALS AND METHOD

A. Preparation, Curing and Testing Of Cube Samples

The aggregates were sampled in accordance with the methods prescribed in BS 812: Part 1:1975 [8]. The test sieves were

International Journal of Latest Technology in Engineering, Management \& Applied Science (IJLTEMAS) Volume VIII, Issue III, March 2019 | ISSN 2278-2540

selected according to BS 410:1986 [9]. The water absorption, the apparent specific gravity and the bulk density of the coarse aggregates were determined following the procedures prescribed in BS 812: Part 2: 1975 [10]. The Los Angeles abrasion test was carried out in accordance with ASTM. Standard C131: 1976 [11]. The sieve analyses of the fine and coarse aggregate samples satisfied BS 882:1992 [12]. The sieving was performed by a sieve shaker. The water used in preparing the experimental samples satisfied the conditions prescribed in BS 3148:1980 [13]. The required concrete specimens were made in threes in accordance with the method
specified in BS 1881: 108:1983 [14]. These specimens were cured for 28 days in accordance with BS 1881: Part 111: 1983 [15]. The testing was done in accordance with BS 1881: Part 116:1983 [16] using compressive testing machine.

B. Testing the Fit of the Quadratic Polynomials

The polynomial regression equation developed was tested to see if the model agreed with the actual experimental results. The null hypothesis was denoted by H_{0} and the alternative by H_{1}.

Table 1: Design matrix for trial mixes based on Scheffe's $(5,2)$ Lattice Polynomial

	Values of Actual Components				Values of Pseudo Components						
$\mathbf{S / N o}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{5}}$	Responses	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{X}_{\mathbf{5}}$
1	0.60	0.95	0.05	1.5	2	22.13	1	0	0	0	0
2	0.50	0.90	0.10	1	2	29.08	0	1	0	0	0
3	0.55	0.85	0.15	2	5	22.52	0	0	1	0	0
4	0.65	0.80	0.20	3	6	15.59	0	0	0	1	0
5	0.57	0.75	0.25	2.4	3.6	15.15	0	0	0	0	1
6	0.55	0.925	0.075	1.25	2	24.67	0.5	0.5	0	0	0
7	0.575	0.90	0.10	1.75	3.5	20.94	0.5	0	0.5	0	0
8	0.625	0.875	0.125	2.25	4	18.16	0.5	0	0	0.5	0
9	0.585	0.85	0.15	1.95	2.8	22.86	0.5	0	0	0	0.5
10	0.525	0.875	0.125	1.5	3.5	24.42	0	0.5	0.5	0	0
11	0.575	0.85	0.15	2	4	13.67	0	0.5	0	0.5	0
12	0.585	0.825	0.175	1.7	2.8	14.28	0	0.5	0	0	0.5
13	0.6	0.825	0.175	2.5	5.5	17.04	0	0	0.5	0.5	0
14	0.56	0.80	0.20	2.2	4.3	20.01	0	0	0.5	0	0.5
15	0.61	0.775	0.225	2.7	4.8	14.72	0	0	0	0.5	0.5

LEGEND: $Z_{1}=$ water; $Z_{2}=$ Cement; $Z_{3}=S C B A, Z_{4}=$ Fine aggregate; $Z_{5}=$ Coarse aggregate
Table 2: Design matrix for Control mixes based on Scheffe's $(5,2)$ Lattice Polynomial

	Values of Actual Components					Values of Pseudo Components					
$\mathbf{S} / \mathbf{N o}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{5}}$	Responses	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{X}_{\mathbf{5}}$
$\mathbf{1}$	0.55	0.90	0.10	1.5	3	22.86	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	0
$\mathbf{2}$	0.6	0.866	0.133	2.167	4.333	18.28	$1 / 4$	$1 / 4$	$1 / 4$	0	$1 / 4$
$\mathbf{3}$	0.607	0.833	0.167	2.3	3.867	19.29	$1 / 4$	$1 / 4$	0	$1 / 4$	$1 / 4$
$\mathbf{4}$	0.575	0.875	0.125	1.875	3.75	18.78	$1 / 4$	0	$1 / 4$	$1 / 4$	$1 / 4$
$\mathbf{5}$	0.592	0.838	0.163	2.225	4.15	19.60	0	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
$\mathbf{6}$	0.579	0.870	0.130	1.941	3.808	17.67	$1 / 8$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 8$
$\mathbf{7}$	0.587	0.859	0.141	2.048	3.838	21.38	$1 / 8$	$1 / 4$	$1 / 4$	$1 / 8$	$1 / 4$
$\mathbf{8}$	0.593	0.853	0.147	2.141	4.025	14.41	$1 / 8$	$1 / 4$	$1 / 8$	$1 / 4$	$1 / 4$
$\mathbf{9}$	0.576	0.875	0.125	1.868	3.59	19.21	$1 / 8$	$1 / 8$	$1 / 4$	$1 / 4$	$1 / 4$
$\mathbf{1 0}$	0.58	0.868	0.133	1.938	3.67	22.20	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 2$
$\mathbf{1 1}$	0.463	0.696	0.104	1.553	3.047	20.38	$1 / 2$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$
$\mathbf{1 2}$	0.574	0.869	0.131	1.88	3.553	20.44	$1 / 8$	$1 / 2$	$1 / 8$	$1 / 8$	$1 / 8$
$\mathbf{1 3}$	0.59	0.903	0.131	1.9	3.7	21.38	$1 / 8$	$1 / 8$	$1 / 2$	$1 / 8$	$1 / 8$
$\mathbf{1 4}$	0.59	0.901	0.133	1.907	3.677	21.13	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 2$	$1 / 8$
$\mathbf{1 5}$	0.589	0.912	0.122	1.848	3.66	18.42	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 2$

LEGEND: $Z_{1}=$ water; $Z_{2}=$ Cement; $Z_{3}=S C B A, Z_{4}=$ Fine aggregate; $Z_{5}=$ Coarse aggregate

III. RESULTS AND DISCUSSION

A. Physical and Mechanical Properties of Aggregates

Sieve analyses of both the fine and coarse aggregates were performed and the grading curves shown in Figures 1 and 2 respectively. These grading curves showed the particle size
distribution of the aggregates. The maximum aggregate size for the granite chipping was 20 mm and 2 mm for the fine sand. The granite chippings had water absorption of 2.7%, moisture content of 44.2%, apparent specific gravity of 2.26 , Los Angeles abrasion value of 22% and bulk density of $2072.4 \mathrm{~kg} / \mathrm{m}^{3}$.

Figure 1 Grading Curve of Sharp Sand

Figure 2 Grading Curve of Coarse aggregate

International Journal of Latest Technology in Engineering, Management \& Applied Science (IJLTEMAS) Volume VIII, Issue III, March 2019 | ISSN 2278-2540

B. The Regression Equation for the Compressive Strength Tests Results

Applying the responses (average compressive strengths) of Tables $1 \& 2$ to Eqn. (15) gives:
$\hat{Y}=22.13 X_{1}\left(2 X_{1}-1\right)+29.08 X_{2}\left(2 X_{2}-1\right)+$
$22.52 X_{3}\left(2 X_{3}-1\right)+15.59 X_{4}\left(2 X_{4}-1\right)+$
$15.15 X_{5}\left(2 X_{5}-1\right)+98.68 X_{1} X_{2}+$
83.76 $X_{1} X_{3}+72.64 X_{1} X_{4}+91.44 X_{1} X_{5}+$
$97.68 X_{2} X_{3}+54.68 X_{2} X_{4}+57.12 X_{2} X_{5}$
$+68.16 X_{3} X_{4}+80.04 X_{3} X_{5}+58.88 X_{4} X_{5}+e$
Eqn. (20) is the model for the optimization of the compressive strength of the sugar cane bagasse ash concrete at $28^{\text {th }}$ day strength, based on Scheffe's $(5,2)$ polynomial.

C. Fit of the Polynomial

The scope of the work was represented as the design matrices for trial and control mixes based on Scheffe's $(5,2)$ lattice polynomial (Tables $1 \& 2$). The polynomial regression equation developed was tested to see if the model agreed with the actual experimental results. There was no significant difference between the experimental and the theoretically expected results. The null hypothesis, H_{0} was satisfied.

D. F-Statistic Analysis

The sample variances $\boldsymbol{S}_{1}{ }^{2}$ and $\boldsymbol{S}_{2}{ }^{2}$ for the two sets of data were not significantly different (Table 3). It implied that the error(s) from experimental procedure were similar and that the sample variances being tested are estimates of the same population variance. Based on Eqn.(16), we had that $\mathrm{S}_{\mathrm{K}}{ }^{2}=62.16825 / 14=$ $4.4406, \mathrm{~S}_{\mathrm{E}}^{2}=59.0435 / 14=4.2174 \& \mathrm{~F}=4.4406 / 4.2174=$ 1.053. From Fisher's table, $\mathrm{F}_{0.05(14,14)}=2.349$, hence the regression equation for the compressive strength of the SCBA concrete was adequate.

Table 3 F -Statistic For The Controlled Points, SCBA Concrete Compressive Strength, Based On Scheffe's (5, 2) Polynomial

Response symbol	y_{K}	y_{E}	$\mathrm{y}_{\mathrm{K}}-\mathrm{Y}_{\mathrm{K}}$	$\mathrm{y}_{\mathrm{E}}-\mathrm{Y}_{\mathrm{E}}$	$\left(\mathrm{y}_{\mathrm{K}}-\mathrm{Y}_{\mathrm{K}}\right)^{2}$	$\left(\mathrm{y}_{\mathrm{E}}-\mathrm{Y}_{\mathrm{E}}\right)^{2}$
$\mathbf{C}_{\mathbf{1}}$	22.86	23.125	3.17	3.10	10.018	9.626
$\mathbf{C}_{\mathbf{2}}$	18.28	18.299	-1.41	-1.72	1.992	2.970
$\mathbf{C}_{\mathbf{3}}$	19.29	19.466	-0.40	-0.56	0.161	0.310
$\mathbf{C}_{\mathbf{4}}$	18.78	18.725	-0.91	-1.30	0.831	1.683
$\mathbf{C}_{\mathbf{5}}$	19.60	19.474	-0.09	-0.55	0.008	0.301
$\mathbf{C}_{\mathbf{6}}$	17.62	17.999	-2.07	-2.02	4.305	4.094
$\mathbf{C}_{\mathbf{7}}$	21.38	21.53	1.69	1.51	2.851	2.273
$\mathbf{C}_{\mathbf{8}}$	14.41	15.617	-5.28	-4.41	27.895	19.408
$\mathbf{C}_{\mathbf{9}}$	19.21	19.408	-0.48	-0.61	0.229	0.377
$\mathbf{C}_{\mathbf{1 0}}$	22.20	22.29	2.51	2.27	6.309	5.142
$\mathbf{C}_{\mathbf{1 1}}$	20.38	22.308	0.69	2.29	0.469	5.224
$\mathbf{C}_{\mathbf{1 2}}$	20.44	20.559	0.75	0.54	0.565	0.288
$\mathbf{C}_{\mathbf{1 3}}$	21.38	21.767	1.69	1.74	2.840	3.044
$\mathbf{C}_{\mathbf{1 4}}$	21.13	21.345	1.44	1.32	2.069	1.749
$\mathbf{C}_{\mathbf{1 5}}$	18.42	18.424	-1.27	-1.60	1.625	2.555
$\mathbf{T o t a l ~}^{\text {Mean }}$	295.37	300.336			62.168	59.043
	19.69	20.02				

Legend: $\breve{y}=\Sigma y / n$ where y is the response and n, the number of observed data (responses) y_{k} is the experimental value (response) $; \mathrm{y}_{\mathrm{E}}$ is the expected or theoretically calculated value(response)

IV. CONCLUSION

The strengths (responses) of the SCBA concrete were a function of the proportions of its ingredients: water, cement, SCBA, fine aggregate and coarse aggregates. Since the predicted strengths by the model were in total agreement with
the corresponding experimentally-observed values, the null hypothesis was satisfied. This meant that the model equation was valid.

REFERENCES

[1]. Jackson, N. And Dhir, R. K. (1988) Civil Engineering Material, Macmillan ELBS, Hampshire RG21 2XS, England.
[2]. Shetty, M.S., (2014)Concrete Technology, Theory and Practice, S.Chand, New Delhi.
[3]. Umeonyiagu, I.E., (2013) Mathematical Models for the prediction of the strength characteristics of concrete with coarse aggregates of variable sources, Unpublished works, Nnamdi Azikiwe University.
[4]. Akhanarova, S. and Kafarov, V., (1982) Experiment and Optimization in Chemistry and Chemical Engineering, MIR Publishers, Moscow.
[5]. Stroud, K.A.,(1999) Further Engineering Mathematics, Third Edition, Macmillian Press Ltd, Hampshire, RG21 2XS, England.
[6]. Scheffe, H.,(1958) Experiments with mixtures, Royal Statistical Society Journal, Ser. B, Vol. 20, pp340- 60.
[7]. Biyi, A., (1975)Introductory Statistics, Abiprint \& Pak Ltd., Ibadan.
[8]. BS 812: Part 1 (1975)Sampling, shape, size and classification. Methods for sampling and testing of mineral aggregates, sands and fillers. British Standards Institution Publication, London.
[9]. BS 410 (1986) Specification for test sieves. British Standards Institution Publication, London.
[10]. BS 812: Part 2 (1975)Methods for sampling and testing of mineral aggregates, sands and fillers. Physical properties. British Standards Institution Publication, London.
[11]. ASTM. Standard C 131 (1976)Tests for Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine. American Society for Testing and Materials Publication, New York.
[12]. BS 882 (1992) Specification for aggregates from natural sources for concrete. British Standards Institution Publication, London.
[13]. BS 3148 (1980) Tests for water for making concrete. British Standards Institution Publication,London.
[14]. British Standard 1881: Part 108 (1983) Method for making test cubes from fresh concrete. British Standards Institution Publication, London.
[15]. British Standard 1881: Part 111 (1983) Method of normal curing of test specimens $\left(20^{\circ} \mathrm{C}\right)$. British Standards Institution Publication, London.
[16]. British Standard 1881: Part 116 (1983)Method for determination of compressive strength of concrete cubes. British Standards Institution Publication, London.

