
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 
Volume VIII, Issue IV, April 2019 | ISSN 2278-2540 

 

www.ijltemas.in Page 150 
 

A Reinforcement Learning Based Secured Routing 
Protocol for Wireless Sensor Networks 

 
FAGBOHUNMI Griffin Siji1, ENEH I. I.2 

1Computer Engineering Department, Abia State Polytechnic Aba, Abia State, Nigeria 
2Electrical and Electronics Engineering Department, Enugu State University of Science and Technology, Enugu, Nigeria 

Abstract:-Wireless sensor networks (WSNs) consist of spatial 
distribution of sensors which co-operatively monitor the 
environment for certain phenomenon of interest such as 
temperature, humidity, pressure etc, and send their sensed data 
through multi-hop route to the sink. These nodes may vary 
between hundreds to thousands depending on the size and nature 
of data (signals) to be detected. Wireless sensor networks are 
expected to operate over long periods without being attended to. 
The range of this period may span from some months to even 
years. However due to its resource constraints i.e. limited battery 
power, low bandwidth, limited sensing range and low memory, it 
is pertinent that its resources must be optimally utilized. This 
paper addresses a secured routing protocol to a specified sink in 
a multi-sink scenario. It is a subset of a novel algorithm required 
to securely route data to multiple mobile sinks in WSN. It 
employs reinforcement learning paradigm and in particular (Q-
learning) while the transition (action) is modeled as a Partially 
Observable Markov Decision Process.   

Index Terms—reinforcement learning, Q-learning, Trust 
mechanism, computational intelligence, localization 

I. INTRODUCTION 

SNs are composed of spatially distributed sensor nodes 
that cooperatively monitor environmental changes over 

time. Sensors sense data and transmit it to the sink (gateway 
between sensor nodes and end users) through multi-hop 
routing. WSN has a number of constraints when compared 
with other data communication networks, such as wired and 
wireless networks. This includes  (i) they are both energy and 
power constraint, [1] (ii) they have limited bandwidth (iii) 
they are deployed in the open. All these limitations suggest 
that a routing protocol designed for wireless sensor networks 
must not only optimize its limited resources optimally, but 
must also be secure so as to mitigate the effects of adversarial 
nodes. The unreliable wireless channels and unattended 
operations make it very easy to compromise/capture the 
nodes. In Nigeria the menace of crude oil pipeline 
vandalization has cost the federal government huge fortune, 
hence no cost should be spared in protecting this huge 
resource. This can be implemented through an appropriate 
deployment of a secured and energy efficient routing protocol 
using wireless sensor networks to monitor online 
environmental phenomenon such as, pressure, temperature 

and flow rate of the crude oil in the pipes.  A lot of effort has 
gone into secured routing in Wireless sensor networks. The 
current approach is the combined use of cryptography and 
trust mechanism as proposed in RFSN [2] and TARP [3]. 
However this approach is not resilient to adversarial nodes 
capable of compromising the trust mechanism. These 
adversarial nodes can achieve this by giving false 
recommendation about neighbour nodes. Secondly these 
protocols require the explicit model of the network topology, 
a requirement that will be too much for the memory 
constrained wireless sensor network nodes. Thirdly in an 
attempt to isolate adversarial nodes using the trust mechanism, 
a lot of control information are included in the data packets 
which increases network overhead.  

This paper employs Q-learning for the protocol design. Q-
learning [4] is a reinforcement learning technique that models 
sequential decision making in a partially observable 
environment, making it an ideal choice for nodes in WSNs 
that need to choose a suitable next- hop neighbour to route 
packets with only limited information Its strength lies in the 
fact that it doesn’t require an explicit model of the network 
topology, (It updates its Q-value based on the agent’s 
interaction with the environment). It only stores the outcome 
of the agent’s interaction with the environment, hence it can 
be easily deployed on the memory constrained WSN. It has 
been shown that Q-learning converges to the optimal action-
value function [5] - [6]. However, it suffers from slow 
convergence, especially when the discount factor γ is close to 
one [7], [8].  The main reason for the slow convergence of Q-
learning is the combination of the sample-based stochastic 
approximation (that makes use of a decaying learning rate) 
and the fact that the Bellman operator propagates information 
throughout the whole space (especially when γ is close to 1). 
This is taken care of in this protocol because the learning rate 
here is 1, i.e. the initial Q-value is a function of the number of 
nodes and neighbour to each nodes, unlike the random value 
used in the original Q-learning Hence the Q-value is bound to 
successively reduce and converge more quickly to the optimal 
value instead of oscillating as in the original Q-value model 
and secondly each node stores only the routing table of its 
neighbour nodes instead of all the nodes in the network. This 
gives the protocol its localized nature. 

W
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The use of the Partially Observable Markov Decision Process 
(POMDP) model for the transition parameter within the Q-
learning model, [9] will help to simultaneously address 
security issues and energy constraints while routing in WSNs. 
POMDP model suffers from what is termed the curse of 
dimensionality because its state action steps increases 
exponentially with the number of horizon. Using factored 
representations as in [10], state-of-the-art off-line solution 
methods fail to achieve acceptable solutions. Even though on-
line methods as in [11] can improve scalability, they are not 
applicable due to the energy constraints of WSNs. To 
overcome the above issues, the transition parameter (routing) 
in the Q-learning will be modeled using a hierarchical 
POMDP (called Secure Routing POMDP (SRP). Factored 
representation will be employed to address the complexity in 
solving each SRP component. The SRP hierarchy (Fig. 3 in 
section 4) consists of the routing POMDP for making routing 
decisions, the alarm POMDP for sending/receiving alarms 
about malicious nodes and the fitness POMDP to compute the 
fitness (suitability) of nodes to route packets. The 
contributions of this paper includes,  (1) the SRP model  can 
balance the energy consumption and secured routing required 
in a network involving several categories of adversarial nodes. 
(2) it demonstrates that SRP can mitigate the effects of 
different categories of adversarial nodes that target the trust 
systems. (3) Extensive evaluation was carried out in a 
simulated and a real-world test-bed, to validate the 
effectiveness of SRP against state-of-the-art trust based 
routing schemes. The above contributions greatly help to 
facilitate the deployment of WSNs in hostile environments. 

The rest of the paper is organized as follows: Section 2 looks 
into related works, here current security enabled WSN routing 
algorithm are highlighted, section 3 provides a detailed 
description of the SRP model using Q-learning section 4 
describes the protocol implementation, section 5 shows the 
results and analysis obtained through simulation and hardware 
test-bed, while section 6 concludes the paper and highlights 
areas for future research. 

II. RELATED WORK 

In RFSN: Reputation based Framework for High Integrity 
Sensor Networks. [2], the quality of a node was determined 
using the Beta distribution on the cooperation information 
collected from a watchdog [12] mechanism as well as from 
recommendations given by other nodes. In TARP [3] the 
authors use a trust mechanism which isolates routing through 
malicious nodes by assessing each node neighbour’s 
forwarding ratio using both direct evaluation (RSSI) and 
recommendation information from other nodes. However, the 
above trust schemes are not resilient to sophisticated unfair 
rating attacks which target the trust systems and the size of 
their data packets due to the inclusion of many bytes of 
control information makes them infeasible to be deployed in a 
memory constrained WSN. In CONFIDANT [13] the authors 

use a broadcasting mechanism to send alarms about malicious 
nodes, however it is still susceptible to unfair ratings, where 
nodes can send false alarms in a sophisticated manner. The 
broadcast nature of the protocol also makes it memory 
intensive (i.e it doesn’t employ the neighbourhood mechanism 
where the routing table comprises of routes to only neighbour 
nodes), and hence infeasible in WSN.  In [14] the author 
proposed a POMDP based routing scheme that estimates its 
component states composed of neighbour nodes local 
parameters (selfishness and energy limitation). However, it 
uses gradient techniques (shortest path) to determine policies 
which (as is shown empirically), can be far from optimal. 
Also, it does not use recommendation information from other 
sensor nodes which leads to a poor packet delivery rate. This 
it does in other to reduce the overhead in memory 
requirements, taking into cognizance the limited memory 
capability in WSNs. 

In this paper the hierarchical POMDP based approaches as in 
LEACH. [15] -  [18], will be used. This is due to the large 
state space required to model its operation and because the 
routing problem can be easily partitioned into sub-problems 
based on the actions (see Fig. 3).  

III. THE SECURE ROUTING POMDP MODEL USING Q-
LEARNING (METHODOLOGY) 

The SRP protocol preferred in this paper use the Q-learning 
model. Q-learning is a reinforcement learning technique in 
which an agent interacts with its environment in order to 
maximize cumulative reward in transversing from any given 
state to the goal state. Its description is given below: 

A SRP can be described by the tuple (S, A, T, R, Ω, B): 
where: 

Agent State (S):  is defined as 𝐷 , 𝑟𝑜𝑢𝑡𝑒𝑠  where Dp  D 

are the sinks the packets must reach and 𝑟𝑜𝑢𝑡𝑒𝑠   is the 

routing information about all neighbouring nodes N with 
respect to the individual sinks.  

Actions (A): This represents a routing decision through a 
neighbour node to a desired sink. This step is used to 
determine the sets of secured neighbour (route) to each sink 
from the sink announcement phase in the network. It is 
calculated as the number of hops to a desired sink.  

A = ∑ ℎ𝑜𝑝𝑠∈ − − − − − − − − (1)  

Where ℎ𝑜𝑝𝑠    are the number of hops to reach destination d 
 Di and | Di | is the number of sinks in D. 

Transition (T) : This specifies probabilities Pr(s’|s, a) i.e. the 
probability of transiting from state s to s’ given that a certain 
action ‘a’ has occurred. It is based on the Partially Observable 
Markov Decision Process (POMDP)  model. 

P(s’|s, a) = ∑ 𝑃(𝑠 ′ 𝑠, 𝑠 ′).  𝑏(𝑠)∈    --------------(2) 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 
Volume VIII, Issue IV, April 2019 | ISSN 2278-2540 

 

www.ijltemas.in Page 152 
 

Q-Values. This is used to determine the value of the number 
of hops from any source node s through any neighbour node 
to the destination. The purpose of the Q-learning algorithm in 
this thesis is to determine which series of neighbour nodes 
from the source node will lead to an optimal Q-value to any 
particular sink in the network. (i.e. minimum number of 
hops).the initial Q-value will be computed as a function of the 
available number of neighbours to a node. This is given as:  

pi = (ei , Si) is: 

Q(pi) =  ( ∑ 𝑗𝑢𝑚𝑝𝑠 )∈  – 2{(|Si|) -2)}- - - - - - - - (3)                           

where 𝑗𝑢𝑚𝑝𝑠 denotes the number of hops required to arrive 
at destination S using neighbour ei . 

Observation (O) :The agent also receives observations (O  
Ω ) based on the observation model O, specifying the 
probabilities Pr(o|a, s’) i.e. the probability of observing a 
certain reward given that the agent  performs an action ‘a’ 
having transited to s’.  The observation represents the 
probability distribution of the states. It is given by: 

P(o|a, s’) = ∑ 𝑃(𝑜 𝑠 ′).  𝑃(𝑠 ′|𝑠, 𝑎)∈   --------------    (4) 

Reward R(s, a, s’) :  the reward that an action ‘a’ causes 
transition from s to s’. An infinite horizon problem is assumed 
. It is given by: 

R(s, a, s’) = ∑  𝑟(𝑠, 𝑎).  𝑏(𝑠)∈   -------------------(5) 

Where r(s, a) =  𝐶
 
 +  𝑄(𝑎))     and b(s)  =  P(s)  

Here 𝐶
 
 is the action’s cost (always 1 in the hop count 

metric) and 𝑄(𝑎) is the lowest (best) Q-value from the fit 
neighbours), b(s) is the probability distribution among the 
neighbour nodes. 

Belief (B):  This is a probability distribution over states via 
Bayes’ rule. If b(s) specifies the probability of s ( s), the 
updated belief b’ after taking action a and receiving 
observation o is given by, 

𝑏′(𝑠 ′) =  
 ( ′, | , )

 ( | , )
=

 ( | , ′)

 ( | , )
∑ Pr(𝑠 ′ 𝑠, 𝑎) 𝑏(𝑠)   (6)                                        

A SRP policy maps beliefs to actions and is associated with a 
value function  (b) which evaluates the expected total 
reward of executing policy  starting from b. The objective of 
a SRP agent is to find an optimal policy , which maximizes 
the expected total reward. 

IV. SRP PROTOCOL IMPLEMENTATION 

The following shows the flow of the protocol implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig1   Block diagram showing the flow of the SRP protocol 

The first step in the protocol is the inclusion of the 
cryptographic mechanism. SRP employs the homomorphic 
encryption which allows arithmetic operation to be performed 
on ciphertexts with the result equivalent to performing same 
operation on plain texts. This enables nodes within a cluster to 
aggregate their sensor readings on the cluster without the need 
of decrypting the message along the path to the cluster head. 
This implies that all the nodes in a cluster require only the 
public key with the exception of the cluster heads which 
require both the public and private keys in order to securely 
transmit data in the network. The consequence of this is that 
the data packets for each nodes are considerably reduced 
leading to lower communication overhead. 

The second step is the sink announcement phase, here the sink 
send the route request (RREQ) packet through its neighbours 
to all the nodes in the network. The purpose of this step is to 
compute the number of hop count from the sink to all the 
nodes in the network. Initially the hop count is  nodes in a 
cluster require only the public key with the exception of the 
cluster heads which require both the public and private keys in 
order to securely transmit data in the network. The 
consequence of this is that the data packets.  

START 

Identification of secured neighbour nodes using 
localized technique with Q-learning approach 

Incorporate security feature (model) in the SRP 
protocol using homomorphic encryption 

END 

Updating Q-values in routing from a specific node to 
the sink through successive fit neighbour nodes 

Compare SRP with other secured routing protocol 
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The first step in the protocol is the inclusion of the 
cryptographic mechanism. SRP employs the homomorphic 
encryption which allows arithmetic operation to be performed 
on ciphertexts with the result equivalent to performing same 
operation on plain texts.  

This enables nodes within a cluster to aggregate their sensor 
readings on the cluster without the need of decrypting the 
message along the path to the cluster head. This implies that 
all the for each nodes are considerably reduced leading to 
lower communication overhead. 

 

Fig 2   Flowchart for RREQ and RREP Procedure in SRP 

The second step is the sink announcement phase, here the sink 
send the route request (RREQ) packet through its neighbours 

to all the nodes in the network. The purpose of this step is to 
compute the number of hop count from the sink to all the 
nodes in the network. Initially the hop count is  initialized to 0 
meaning that the hop count from the sink to itself is 0 ). This 
value is incremented by 1 through successive neighbour 
nodes. The nodes send a route reply (RREP) packets back to 
the sink, however this time through only the fit neighbour 
nodes. The parameter for determining a fit neighbour are (i) 
distance to sink, (ii) Percentage of remaining energy on node 
(iii) routing behavior (i.e. adversarial capability of nodes) and 
(iv) rating (i.e. the integrity of nodes to give correct 
recommendation about other nodes in the network. The 
flowchart for this is shown in fig 2 

From the secured model proposed in section 3, a large state 
space will be required to model parameters needed in the 
network. This will result in an infinite convergence time for 
the protocol. In order to address this situation, a hierarchical 
formulation is proposed here (as shown in Fig 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Secure Routing POMDP (SRP) procedure hierarchy 

Hence the third step is the routing of data packets through a fit 
neighbour node, however this consists of three sub-function 
which is described as follows: anytime data packet is to be 
routed from a particular source node, to the sink the Routing 
SRP sub-function is activated. The Routing SFROMS sub-
function then calls the fitness sub-function. The fitness sub-
function determines the fitness of a neighbour node using the 
parameters stated earlier. The third sub-function the alarm 
sends alarm about unfit neighbbour nodes. The identity of 
such node is stored in the sub-function so that data packet will 
not be routed through the node in subsequent time. 

The flowchart for the routing sub-function, fitness sub-
function and alarm sub-function is shown in figure 4, 5, and 6 
respectively.  
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            Fig 4    Flowchart for SRP routing  Procedure 
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Fig 5   Flowchart for Fitness Procedure 
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Fig 6    Flowchart for The alarm SRP procedure procedure 

The fourth and final stage is the Q-value update, here the cost 

function is a weighted function of the number of hop count 

and the maximum remaining energy of the nodes on the path 

to the sink. This implies that data will be routed through nodes 

with high remaining energy even if it results in a higher hop 

count in preference to nodes with low remaining energy. This 

process continues until the Q-values converge to the optimal 

value for all the nodes in the network.. The flowchart for the 

Q-value update procedure is shown in figure 7. 

Fig  7  Flowchart for updating Q-values in SRP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig  7  Flowchart for updating Q-values in SRP 

V. RESULTS AND ANALYSIS 

Experiments were conducted in a simulated environment as 

well as on hardware test-bed to compare the performance of 

SRS with RFSN [2], CONFIDANT [13] and [14]. To show 

the usefulness of alarms SRP, (AS), the results of SRP with, 

and without AS was compared. It is denoted by SRP and SRP-

NAS, respectively. To verify the usefulness of the hierarchical 

structure, SRP was implemented without any hierarchy, but 

the method failed to find a reasonable solution (due to the 

large state/action space), thus not shown in the results. The 

metrics used for characterizing the WSN security are: the 

average Packet Delivery Ratio (PDR) i.e, ratio of data packets 

successfully delivered to the sink and Residual Energy (RE) 

i.e., average (remaining) energy of each sensor node in the 

network. 
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Fig 8(a-b)  Graph of  (PDR) and Residual-Energy (RE) under Black-hole adversary 

 
For simulation, the MATLAB Simulator was used. The 

topology includes 100 stationary nodes, uniformly randomly 

distributed within a 1000m X 1000m square, with the sinks at 

its right end. The transmission radius is 100m and M=5 (i.e. 

number of neighbours). Each node generates packets at the 

rate =1 per time step. The size of each data packet is 512 

bytes, HELLO packet is 60 bytes, QUERY, ALARM and 

ACK packet is 125 bytes. The initial energy of each sensor 

node is 2J. The radio dissipates 50 nJ / bit to run the 

transmitter/receiver circuitry and 100 pJ / bit for the 

transmitter amplifier. 20% of the nodes were assumed to be 

compromised. The experiments are run for 100 time steps, 

transmitting over 10,000 data packets.  

In Fig. 8 (a-b), the following can be deduced from the 

simulation: (i) The PDR (Packet delivery ratio was highest in 

the SRP and SRP-NAS (97%), under the black-hole attack,  

here adversarial nodes drop all data packets routed through 

them. It can also be seen that SRP shows a slightly better 

performance than SRP-NAS because it quickly identifies 

adversarial nodes, while in the case of SRP-NAS, it first 

routes through the adversarial node before it learns of its 

integrity.  

NURMI as opposed to the other protocols considers routing 

directly to a neighbour node without seeking integrity factor 

rating (this is the observation received about the 

recommendation given by a node about other nodes in the 

network, also referred as the rating function) from other nodes 

in the network before routing. This can be seen by its low 

PDR (73%). Conversely it has the highest remaining energy of 

all the compared protocols as it doesn’t seek integrity factor 

rating however it pays more proportionally for this by its very 

low PDR. (ii) From  Fig. 8(b), it can be seen that SRP has a 

lower residual energy compared to SRP-NAS, however the 

reduction is minimal. This can be attributed to alarm sub-

function that is included in the protocol, where the integrity 

factor rating from other nodes can lead to the execution or non 

execution on the danger/alarm procedure, this incurs higher 

communication overhead. The RE values for SRP and SRP-

NAS is 1.83J and 1.85J respectively. The residual energy of 

CONFIDANT is the lowest. This is due to its continuous 

integrity factor rating recommendation from many nodes in 

the network before routing data. This causes huge 

communication overhead with the resultant a lower residual 

energy. Its RE is 1.2J.  

The graph in Fig 8(c-d) gives comparable results to Fig 8(a-b). 

In this simulation the on-off attackers drop packets every 5 

time steps. SRP and SRP-NAS achieve the highest PDR (97% 

and 95% respectively after 100 time steps). The PDR of SRP 

is a slight improvement over that of  SRP-NAS, because it can 

quickly identify the on-off adversarial nodes, especially in the 

beginning. 
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Fig 8(c-d)  Graph of Packet Delivery Ratio (PDR) and  Residual-Energy (RE) under on-off attack. 

However their performance was at par towards the end of the 

simulation. This is so because after a time interval the SRP-

NAS protocol must have identified the on-off adversarial 

node, thereby excluding them from routing data.  

NURMI as opposed to the other protocols considers routing 

directly to a neighbour node without seeking integrity factor 

rating from other nodes in the network before routing. This 

can be seen by its low PDR (73%). Conversely it has the 

highest remaining energy of all the  

compared protocols as it doesn’t seek integrity factor rating 

however it pays more proportionally for this by its very low 

PDR. Its RE was 1.9J (92%). As opposed to SRP, SRP-NAS, 

RFSN, CONFIDANT which use both direct evaluation and 

recommendations, NURMI uses only direct evaluation. This 

accounts for the low PDR (73%), for NURMI as adversarial 

nodes that target the trust mechanism were able to give false 

reputation of a neighbour node. the other being the use of 

gradient techniques for computing policy. SRP achieves a 

lower residual-energy than SRP-NAS (90% and 91% 

respectively), as SRP usually activate the alarms sub-function 

any time it receives low integrity factor index about a node. 

This operation usually results in additional communication 

overhead. RFSN continuously seek integrity factor  index 

from all neighbours before routing while CONFIDANT 

continuously activates the alarms sub-function any time it 

receives low integrity factor index from majority of 

neigbouring nodes, as it is being modeled in its observation. . 

This is the cause of its lower residual energy of 87% and 75% 

respectively. As Nurmi does not query other nodes, it achieves 

a high residual-energy of 1.92 J.(96%).  However despite the 

higher functionality in SRP and SRP-NAS, they still have high 

remaining energy 1.85J (92.5%) after 100 timestamps. This is 

due to the use of Q-learning model used in determining the 

fitness of node and the avoidance of adversarial nodes which 

could cause quick depletion of the sensor node’s energy.. 

CONFIDANT has the lowest remaining energy (1.2J) due to 

its relentless sending of alarms about malicious nodes. 

In Fig. 8 (e-f), under probabilistic attack, adversarial nodes 

randomly send and drop data packets routed through them, 

hence their behaviour is deceptive. Under this scenario SRP, 

and SRP-NAS achieve high performance 96% and 94% PDR 

respectively because they can easily identify adversarial nodes 

with this deceptive behaviour as it is part of the observation 

probability computation. RSFN and CONFIDANT perform 

worse 84% and 79% PDR respectively due to the fact that it 

takes time for the protocol to recognize this type of deceptive 

adversarial nodes. While NURMI performs worst 72% PDR, 

as it cannot identify such adversarial nodes, thus it is 
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Fig 8(e-f) Graph of Packet Delivery Ratio (PDR) and Residual-Energy (RE) under probabilistic attack 

adversely affected by adversarial nodes that sends false 

reputation about neighbour nodes.. However in terms of 

remaining energy (RE) NURMI achieves a slightly higher 

residual energy of 1.63 J than both version of SRP as NURMI 

does not query other nodes however the deceptive nature of 

the adversarial nodes cause high energy drain mainly at the 

beginning of the simulation,. However despite the higher 

functionality in SFROMS and SFROMS, they still have high 

remaining energy 1.54J and 1.59 J respectively after 100 

timestamps. This is due to the use of Q-learning model used in 

determining the fitness of node and the avoidance of 

adversarial nodes which could cause quick depletion of the 

sensor node’s energy. CONFIDANT has the lowest remaining 

energy (1.2J) due to its continuous activation of the danger 

sub-function whenever it receives a low integrity factor index 

about the reputation of a node from other neighbouring nodes.. 

In Fig. 8(g-h), under the importance  attack, the adversarial 

nodes have other nodes that are sub-nodes to it, so whenever 

data is routed through them they send it to their child nodes 

which results in a high number of  hop count to the 

destination. It may even result in a face routing problem where 

data packet travel in an infinite loop. In the importance attack, 

the adversarial nodes are increased to 60%, making them the 

majority due to the number of sub-node that depend on them 

for routing.. Here SRP with PDR 96% performs better than 

SRP-NAS, as it is able to isolate such adversarial nodes by 

activating the danger sub-function, while SFROMS-NAS with 

PDR 92% initially obtains mis-routed information from the 

adversarial nodes. This causes its initial routing through such 

nodes, until they are recognized after routing. NURMI has the 

lowest PDR of 72%. In terms of remaining energy (RE) SRP-

NAS has a higher remaining energy to SFROMS, 80% and 

76% respectively. NURMI has the highest RE of 85% while 

CONFIDANT has the lowest RE of 65% 

In general from Fig 8(a-h) it was shown that AS improves the 

performance of SRP i.e.(PDR of SRP is always greater than 

SRP-NAS, although AS involves additional energy drain, in 

some cases). Also SRP outperforms the compared secured 

routing protocols by between 8% - 25%. 
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Fig 8 (g-h) Graph of Packet Delivery Ratio (PDR) and Residual-Energy (RE) under importance  attack 

In order to validate the secured routing protocol, in a real-

world test-bed, the performance of SRP was compared with 

RFSN, CONFIDANT and NURMI. The experimental setup 

consists of arduino-uno (microcontroller), programmable 

xbees (radio transceiver) and LM 35 temperature sensor 

(sensing device) the combination of arduino uno xbee and LM 

35 temperature sensor acts as the end device while the 

combination of the arduino uno and xbees acts as the router 

and co-ordinator nodes. The results of SRP were  compared 

with and without AS denoted by SRP and SRP-NAS, 

respectively. Two performance metrics were used for 

comparison: The average Packet Delivery Rate and Residual 

Energy (RE). The  neighborhood radius is 75m, size of 

packets is 62 bytes, initial node energy is 2J. For this purpose 

the individual protocols uploaded separately onto the arduino 

board, while the PDR and RE results were taken by 

connecting the laptop connected to the co-ordnator node with 

MATLAB Support package for Arduino. In Fig 9(a) under 

importance attack, the results show that SRP with PDR 91:5% 

outperforms other compared protocols. by between 15 to 25% 

, while in fig 9(b) SRP with the exception of NURNI was able 

to conserve the energy in 

 

                

 
Figure 9 : Graph on the Collusive unfair  adversarial nodes (Hardware Test-bed) 
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comparison to the other protocols by between 0.2 – 0.5J 

within the simulation period. This is due to its conservative 

propagation of alarms only where appropriate unlike 

CONFIDANT AND RSFN that repeatedly propagates alarm. 

The higher residual energy in NURMI is due to the fact that it 

doesn’t propagate alarms, which is the reason for its low PDR 

of 75%. 

VI. CONCLUSION 

The Secure Routing POMDP (SRP) approach is presented in 

this paper, to select suitable next-hop neighbours and 

successfully route packets to the sink. It is a subset of the 

protocol to route to multiple mobile sinks. SRP can deal with 

black-hole, on-off attacks, etc., and other attacks targeting the 

trust system. It balances the exploration/exploitation tradeoff 

in gaining/exploiting information about sensor nodes, thereby 

effectively addressing their energy constraints. Experiments 

both in simulation and on hardware test-bed show that SRP 

consistently achieve higher packet delivery rate by coping 

with various categories of adversarial nodes, while still 

maintaining high residual energy.. Hence it guarantees secure 

and energy-efficient routing in WSNs. This paper has 

established that SRP is robust against various categories of 

adversarial threats that can compromise the trust mechanism 

employed in current secured routing protocols in WSN. 
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