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Abstract: When many advanced problems of probability, 

statistics, physics and engineering like heat conduction problems, 

vibrating beams problems express mathematically then error 

function appears frequently in these problems. In this article, we 

find the Mahgoub transform (Laplace-Carson transform) of 

error function. In application section, some numerical 

applications of Mahgoub transform of error function are given 

for evaluating the improper integral, which contain error 

function. 
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I. INTRODUCTION 

ntegral transforms play a vital role for solving many 

advance problems like radioactive decay problems, 

population growth problems, vibration problems of beam, 

electric circuit problems and motion of a particle under 

gravity which appear in many branches of engineering and 

sciences. Many scholars used different integral transforms 

(Laplace transform [1], Fourier transform [2], Kamal 

transform [3-7, 29], Mahgoub transform [8-14, 30-33], Elzaki 

transform [15-16, 34-35], Aboodh transform [17-20, 36-39], 

Mohand transform [21-23, 40-43], Sumudu transform [44-45] 

and Shehu transform [46]) and solved differential equations, 

partial differential equations, integral equations, integro-

differential equations and partial integro-differential 

equations. Sudhanshu et al. [24-28] discussed the comparative 

study of these transforms. 

Integral transforms are very useful for finding the solutions of 

engineering problems like heat and mass transfer problems, 

Fick‟s second law, vibrating beams problems. The solution of 

these types of problems contain error and complementary 

error function when solved by any integral transform so it is 

very necessary to knowing the integral transforms of error 

function.  

In mathematics, error and complimentary error functions are 

defined by [47-52] 

𝑒𝑟𝑓 𝑥 =
2

 𝜋
 𝑒−𝑡

2
𝑑𝑡

𝑥

0

…………… . . ………………… . . (1) 

and  

𝑒𝑟𝑓𝑐 𝑥 =
2

 𝜋
 𝑒−𝑡

2
𝑑𝑡

∞

𝑥

……………………………… . . (2) 

In 2016, Mahgoub [30] defined a new integral transform 

“Mahgoub transform‟‟ of the function 𝐹 𝑡  for 𝑡 ≥ 0 as  

𝑀 𝐹 𝑡  = 𝜈 𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

 

= 𝐻 𝑣 , 𝑘1 ≤ 𝑣 ≤ 𝑘2 …………… .……………………… (3) 

where operator 𝑀 is called the Mahgoub transform operator. 

The goal of the present article is to determine Mahgoub 

transform of error function and explain the advantage of 

Mahgoub transform of error function by giving some 

numerical applications in application section. 

II. SOME USEFUL PROPERTIES OF MAHGOUB 

TRANSFORM 

2.1 Linearity property [8, 12-14]: 

If Mahgoub transform of functions  𝐹1 𝑡  and 

𝐹2 𝑡 are  𝐻1 𝑣  and 𝐻2 𝑣  respectively then Mahgoub 

transform of  𝑎𝐹1 𝑡 + 𝑏𝐹2 𝑡   is given by  

 𝑎𝐻1 𝑣 + 𝑏𝐻2 𝑣  , where 𝑎, 𝑏 are arbitrary constants. 

Proof: By the definition of Mahgoub transform, we have  

𝑀 𝐹 𝑡  = 𝑣 𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

 

⇒ 𝑀 𝑎𝐹1 𝑡 + 𝑏𝐹2 𝑡  = 𝑣  𝑎𝐹1 𝑡 + 𝑏𝐹2 𝑡  𝑒
−𝜈𝑡𝑑𝑡

∞

0

 

⇒ 𝑀 𝑎𝐹1 𝑡 + 𝑏𝐹2 𝑡  

= 𝑎𝑣 𝐹1 𝑡 𝑒
−𝜈𝑡𝑑𝑡

∞

0

+ 𝑏𝑣 𝐹2 𝑡 𝑒
−𝜈𝑡𝑑𝑡

∞

0

 

I 
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⇒ 𝑀 𝑎𝐹1 𝑡 + 𝑏𝐹2 𝑡  = 𝑎𝑀 𝐹1 𝑡  + 𝑏𝑀 𝐹2 𝑡   

⇒ 𝑀 𝑎𝐹1 𝑡 + 𝑏𝐹2 𝑡  = 𝑎𝐻1 𝑣 + 𝑏𝐻2 𝑣 ,  

where 𝑎, 𝑏 are arbitrary constants. 

2.2 Change of scale property [14]: 

If Mahgoub transform of function 𝐹 𝑡  is 𝐻 𝑣  then Mahgoub 

transform of function 𝐹 𝑎𝑡 is given by 𝐻  
𝑣

𝑎
 . 

Proof: By the definition of Mahgoub transform, we have  

𝑀 𝐹 𝑎𝑡  = 𝑣 𝐹 𝑎𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

…………………… . (4) 

Put 𝑎𝑡 = 𝑝 ⇒ 𝑎𝑑𝑡 = 𝑑𝑝 in equation (4), we have  

𝑀 𝐹 𝑎𝑡  =
𝑣

𝑎
 𝐹 𝑝 𝑒

−𝑣𝑝
𝑎 𝑑𝑝

∞

0

 

⇒ 𝑀 𝐹 𝑎𝑡  = 𝐻  
𝑣

𝑎
 . 

2.3 Shifting property:  

If Mahgoub transform of function  𝐹 𝑡  is 𝐻 𝑣   then 

Mahgoub transform of function  𝑒𝑎𝑡𝐹 𝑡 is given by 
𝑣

 𝑣−𝑎 
𝐻 𝑣 − 𝑎 . 

 Proof: By the definition of Mahgoub transform, we have  

𝑀 𝑒𝑎𝑡𝐹 𝑡  = 𝑣 𝑒𝑎𝑡𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

 

⇒ 𝑀 𝑒𝑎𝑡𝐹 𝑡  = 𝑣 𝐹 𝑡 𝑒−(𝜈−𝑎)𝑡𝑑𝑡
∞

0

 

=
𝑣

 𝑣 − 𝑎 
 𝑣 − 𝑎  𝐹 𝑡 𝑒− 𝜈−𝑎 𝑡𝑑𝑡

∞

0

=
𝑣

 𝑣 − 𝑎 
𝐻 𝑣 − 𝑎 . 

2.4 Mahgoub transform of the derivatives of the function 𝐹 𝑡  
[9-11, 13-14]: 

If 𝑀 𝐹 𝑡  = 𝐻(𝑣) then  

a) 𝑀 𝐹′ 𝑡  = 𝑣𝐻 𝑣 − 𝑣𝐹 0  

b) 𝑀{𝐹′′ 𝑡 } = 𝑣2𝐻 𝑣 − 𝑣2𝐹 0 − 𝑣𝐹′ 0  

c) 𝑀 𝐹 𝑛  𝑡  = 𝑣𝑛𝐻 𝑣 − 𝑣𝑛𝐹 0 − 𝑣𝑛−1𝐹′ 0 −

⋯…− 𝑣𝐹 𝑛−1 (0) 

2.5 Mahgoub transform of integral of a function  𝐹 𝑡 : 

If 𝑀 𝐹 𝑡  = 𝐻(𝑣) then  

𝑀  𝐹 𝑡 𝑑𝑡
𝑡

0

 =
1

𝑣
𝐻(𝑣) 

Proof: Let 𝐺 𝑡 =   𝐹 𝑡 𝑑𝑡
𝑡

0
. Then  

𝐺 ′ 𝑡 =  𝐹 𝑡  and 𝐺 0 = 0. 

Now by the property of Mahgoub transform of the derivative 

of function, we have 

𝑀 𝐺 ′ 𝑡  = 𝑣𝑀 𝐺(𝑡) − 𝑣𝐺 0 = 𝑣𝑀 𝐺(𝑡)  

⇒ 𝑀 𝐺 𝑡  =
1

𝑣
𝑀 𝐺 ′ 𝑡  =

1

𝑣
 𝑀 𝐹 𝑡   

⇒ 𝑀 𝐺 𝑡  =
1

𝑣
𝐻(𝑣)  

⇒ 𝑀   𝐹 𝑡 𝑑𝑡
𝑡

0
 =

1

𝑣
𝐻(𝑣)  

2.6 Mahgoub transform of function  𝑡𝐹 𝑡 [9]: 

If 𝑀 𝐹 𝑡  = 𝐻 𝑣  then  

𝑀 𝑡𝐹 𝑡  =  
1

𝑣
−

𝑑

𝑑𝑣
 𝐻(𝑣) 

Proof: By the definition of Mahgoub transform, we have  

𝑀 𝐹 𝑡  = 𝑣 𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

= 𝐻 𝑣  

⇒
𝑑

𝑑𝑣
𝐻 𝑣 =  𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡

∞

0

+ 𝑣  −𝑡 𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

 

⇒
𝑑

𝑑𝑣
𝐻 𝑣 =

1

𝑣
. 𝑣  𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡

∞

0

− 𝑣 𝑡𝐹 𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

 

⇒
𝑑

𝑑𝑣
𝐻 𝑣 =

1

𝑣
𝐻 𝑣 − 𝑀 𝑡𝐹 𝑡   

⇒ 𝑀 𝑡𝐹 𝑡  =  
1

𝑣
−

𝑑

𝑑𝑣
 𝐻(𝑣) 

2.7 Convolution theorem for Mahgoub transforms [8, 10-12, 

14]: 

If Mahgoub transform of functions  𝐹1 𝑡  and 

𝐹2 𝑡 are  𝐻1 𝑣 and 𝐻2 𝑣  respectively then Mahgoub 

transform of their convolution 𝐹1 𝑡 ∗ 𝐹2 𝑡  is given by  

𝑀  𝐹1 𝑡 ∗ 𝐹2 𝑡  =
1

𝑣
𝑀 𝐹1 𝑡  𝑀 𝐹2 𝑡   

⇒ 𝑀 𝐹1 𝑡 ∗ 𝐹2 𝑡  =
1

𝑣
𝐻1 𝑣 𝐻2 𝑣 , where 𝐹1 𝑡 ∗ 𝐹2 𝑡  is 

defined by 

 𝐹1 𝑡 ∗ 𝐹2 𝑡 =  𝐹1 𝑡 − 𝑥 
𝑡

0
𝐹2 𝑥 𝑑𝑥 

=  𝐹1 𝑥 
𝑡

0

𝐹2 𝑡 − 𝑥 𝑑𝑥 
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III. MAHGOUB TRANSFORM OF FREQUENTLY 

ENCOUNTERED FUNCTIONS [8-14] 

Table: 1 

S.N. 𝐹 𝑡  𝑀 𝐹 𝑡  = 𝐻 𝑣  

1. 1 1 

2. 𝑡 
1

𝑣
 

3. 𝑡2 
2!

𝑣2
 

4. 𝑡𝑛 , 𝑛 ∈ 𝑁 
𝑛!

𝑣𝑛
 

5. 𝑡𝑛 , 𝑛 > −1 
Γ(𝑛 + 1)

𝑣𝑛
 

6. 𝑒𝑎𝑡  
𝑣

𝑣 − 𝑎
 

7. 𝑠𝑖𝑛𝑎𝑡 
𝑎𝑣

𝑣2 + 𝑎2
 

8. 𝑐𝑜𝑠𝑎𝑡 
𝑣2

𝑣2 + 𝑎2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 
𝑎𝑣

𝑣2 − 𝑎2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 
𝑣2

𝑣2 − 𝑎2
 

11. 𝐽0(𝑡) 
𝑣

 𝑣2 + 1
 

12. 𝐽1(𝑡) 𝑣 −
𝑣2

 𝑣2 + 1
 

IV. SOME IMPORTANT PROPERTIES OF ERROR AND 

COMPLEMENTARY ERROR FUNCTIONS 

4.1 The sum of error and complementary error functions is 

unity: 

𝑒𝑟𝑓 𝑥 + 𝑒𝑟𝑓𝑐(𝑓) = 1 

Proof: we have  𝑒−𝑡
2
𝑑𝑡

∞

0
=

 𝜋

2
 

⇒
2

 𝜋
  𝑒−𝑡

2
𝑑𝑡

∞

0

= 1 

⇒
2

 𝜋
 𝑒−𝑡

2
𝑑𝑡

𝑥

0

+
2

 𝜋
 𝑒−𝑡

2
𝑑𝑡

∞

𝑥

= 1 

⇒ 𝑒𝑟𝑓 𝑥 + 𝑒𝑟𝑓𝑐(𝑓) = 1 

4.2 Error function is an odd function: 

𝑒𝑟𝑓 −𝑥 = −𝑒𝑟𝑓 𝑥  

4.3 The value of error function at 𝑥 = 0 is 0: 

𝑒𝑟𝑓 0 = 0. 

4.4 The value of complementary error function at 𝑥 = 0 is 1: 

𝑒𝑟𝑓𝑐 0 = 1. 

4.5 The domain of error and complementary error functions is 

(−∞,∞). 

4.6 𝑒𝑟𝑓 𝑥 → 1𝑎𝑠 𝑥 → ∞. 

4.7 𝑒𝑟𝑓𝑐 𝑥 → 0𝑎𝑠 𝑥 → ∞. 

4.8 The value of error functions 𝑒𝑟𝑓(𝑥) for different values of 

𝑥 [48]: 

Table: 2 

S.N. 𝑥 𝑒𝑟𝑓(𝑥) 

1. 0.00 0.00000 

2. 0.02 0.02256 

3. 0.04 0.04511 

4. 0.06 0.06762 

5. 0.08 0.09008 

6. 0.10 0.11246 

7. 0.12 0.13476 

8. 0.14 0.15695 

9. 0.16 0.17901 

10. 0.18 0.20094 

11. 0.20 0.22270 

V. MAHGOUB TRANSFORM OF ERROR FUNCTION 

By equation (1), we have  

𝑒𝑟𝑓  𝑡 =
2

 𝜋
 𝑒−𝑥

2
𝑑𝑥

 𝑡

0

 

=
2

 𝜋
  1 −

𝑥2

1!
+
𝑥4

2!
−
𝑥6

3!
+ ⋯… 𝑑𝑥

 𝑡

0

 

=
2

 𝜋
 𝑥 −

𝑥3

3.1!
+

𝑥5

5.2!
−

𝑥7

7.3!
+ ⋯…  

 𝑡

0
 

=
2

 𝜋
 𝑡1/2 −

𝑡3/2

3.1!
+
𝑡5/2

5.2!
−
𝑡7/2

7.3!
+. .  ………………… . . . (5) 

Applying Mahgoub transform both sides on equation𝑛(5), we 

get 

𝑀 𝑒𝑟𝑓  𝑡  =
2

 𝜋
𝑀   𝑡1/2 −

𝑡3/2

3.1!
+
𝑡5/2

5.2!

−
𝑡7/2

7.3!
+. .   …………………………… (6) 

Applying the linearity property of Mahgoub transform on 

equation (6), we get 

𝑀 𝑒𝑟𝑓  𝑡  =
2

 𝜋
 
Γ(3/2)

𝑣1/2
−

Γ(5/2)

𝑣3/2. 3.1!
+

Γ(7/2)

𝑣5/2. 5.2!

−
Γ(9/2)

𝑣7/2 . 7.3!
+ ⋯   

=
2

 𝜋

Γ(3/2)

𝑣1/2
 1 −

1

2
 

1

𝑣
 +

1.3

2.4
 

1

𝑣
 

2

−
1.3.5

2.4.6
 

1

𝑣
 

3

+ ⋯……   
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=
1

𝑣1/2
 1 +

1

𝑣
 
−1/2

=
1

  1 + 𝑣 
……………………… (7) 

VI. MAHGOUB TRANSFORM OF COMPLEMENTARY 

ERROR FUNCTION 

We have,  𝑒𝑟𝑓 𝑥 + 𝑒𝑟𝑓𝑐(𝑓) = 1 

⇒ 𝑒𝑟𝑓𝑐 𝑓 = 1 − 𝑒𝑟𝑓 𝑥 …………………………… . . (8) 

Applying Mahgoub transform both sides on equation (8), we 

have  

𝑀 𝑒𝑟𝑓𝑐 𝑓  = 𝑀 1 − 𝑒𝑟𝑓 𝑥  ……………………… . (9) 

Applying the linearity property of Mahgoub transform on 

equation (9), we get 

𝑀 𝑒𝑟𝑓𝑐 𝑓  = 𝑀 1 − 𝑀 𝑒𝑟𝑓 𝑥   

⇒ 𝑀 𝑒𝑟𝑓𝑐 𝑓  = 1 −
1

  1 + 𝑣 
 

⇒𝑀 𝑒𝑟𝑓𝑐 𝑓  =  
  1+𝑣 −1

  1+𝑣 
 ………… .…………… . . (10) 

VII. APPLICATIONS 

In this section, we solve some improper integral, which 

contain error function for explaining the effectiveness of 

Mahgoub transform of error function.  

7.1 Evaluate the improper integral  

𝐼 =  𝑒−𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡. 

We have 𝑀 𝑒𝑟𝑓  𝑡  = 𝑣  𝑒𝑟𝑓  𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0
 

=
1

  1 + 𝑣 
……………………………………  11  

Taking 𝑣 → 1 in above equation, we have 

𝐼 =  𝑒−𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡 =
1

 2
 

7.2 Evaluate the improper integral  

𝐼 =  𝑡𝑒−3𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡. 

We have 𝑀 𝑒𝑟𝑓  𝑡  =
1

  1+𝑣 
 

⇒ 𝑀 𝑡 𝑒𝑟𝑓  𝑡  =  
1

𝑣
−

𝑑

𝑑𝑣
 

1

  1 + 𝑣 
 

=
1

𝑣  1 + 𝑣 
+

1

2 1 + 𝑣 
3
2

…………………………  12  

By the definition of Mahgoub transform, we have 

𝑀 𝑡 𝑒𝑟𝑓  𝑡  = 𝑣 𝑡 𝑒𝑟𝑓  𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

……………… . (13) 

Now by equations (12) and (13), we get 

𝑣  𝑡 𝑒𝑟𝑓  𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

=
1

𝑣  1 + 𝑣 
+

1

2 1 + 𝑣 
3
2

 

Taking 𝑣 → 3 in above equation, we have 

3 𝑡𝑒−3𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡 =
1

6
+

1

16
=

11

48
 

𝐼 =  𝑡𝑒−3𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡 =
11

144
 

7.3 Evaluate the improper integral  

𝐼 =  𝑒−(𝑣−2)𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡. 

We have 𝑀 𝑒𝑟𝑓  𝑡  =
1

  1+𝑣 
 

Now by shifting theorem of Mahgoub transform, we have  

𝑀 𝑒2𝑡 𝑒𝑟𝑓  𝑡  =
𝑣

 𝑣 − 2 
 

1

  𝑣 − 1 
  

⇒ 𝑀 𝑒2𝑡 𝑒𝑟𝑓  𝑡  =
𝑣

 𝑣 − 2   𝑣 − 1 
……………… . (14) 

By the definition of Mahgoub transform, we have 

𝑀 𝑒2𝑡 𝑒𝑟𝑓  𝑡  = 𝑣 𝑒2𝑡 𝑒𝑟𝑓  𝑡 𝑒−𝜈𝑡𝑑𝑡
∞

0

 

⇒ 𝑀 𝑒2𝑡 𝑒𝑟𝑓  𝑡  

= 𝑣 𝑒−(𝑣−2)𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡 ……… . . (15) 

Now by equations (14) and (15), we get 

𝑣  𝑒−(𝑣−2)𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡 =
𝑣

 𝑣 − 2   𝑣 − 1 
 

⇒ 𝐼 =  𝑒−(𝑣−2)𝑡
∞

0

𝑒𝑟𝑓  𝑡 𝑑𝑡 =
1

 𝑣 − 2   𝑣 − 1 
. 

7.4 Evaluate the improper integral  

𝐼 =  𝑒−𝑡
∞

0

  𝑒𝑟𝑓  𝑢 𝑑𝑢
𝑡

0

 𝑑𝑡. 

We have 𝑀 𝑒𝑟𝑓  𝑡  =
1

  1+𝑣 
 

Now by the property of Mahgoub transform of integral of a 

function, we have  
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𝑀  𝑒𝑟𝑓  𝑢 𝑑𝑢
𝑡

0

 =
1

𝑣
 

1

  1 + 𝑣 
  

⇒ 𝑀  𝑒𝑟𝑓  𝑢 𝑑𝑢
𝑡

0

 =
1

𝑣  1 + 𝑣 
…………… (16) 

By the definition of Mahgoub transform, we have 

𝑀  𝑒𝑟𝑓  𝑢 𝑑𝑢
𝑡

0

 = 𝑣 𝑒−𝑣𝑡
∞

0

  𝑒𝑟𝑓  𝑢 𝑑𝑢
𝑡

0

 𝑑𝑡. . . (17) 

Now by equations (16) and (17), we get 

𝑣  𝑒−𝑣𝑡
∞

0

  𝑒𝑟𝑓  𝑢 𝑑𝑢
𝑡

0

 𝑑𝑡 =
1

𝑣  1 + 𝑣 
 

Taking 𝑣 → 1 in above equation, we have 

𝐼 =  𝑒−𝑡
∞

0

  𝑒𝑟𝑓  𝑢 𝑑𝑢
𝑡

0

 𝑑𝑡 =
1

 2
. 

7.5 Evaluate the improper integral  

𝐼 =  𝑒−2𝑡
∞

0

 
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  𝑑𝑡. 

We have 𝑀 𝑒𝑟𝑓  𝑡  =
1

  1+𝑣 
 

Now by change of scale property of Mahgoub transform, we 

have 

𝑀 𝑒𝑟𝑓 2 𝑡  =  
1

  1 + 𝑣/4 
  

⇒ 𝑀 𝑒𝑟𝑓 2 𝑡  =
2

  4 + 𝑣 
 

Now using the property of Mahgoub transform of derivative 

of a function, we have  

𝑀  
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  = 𝑣.

2

  4 + 𝑣 
− 𝑣. 0 

⇒ 𝑀  
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  =

2𝑣

  4 + 𝑣 
……………… . . (18) 

By the definition of Mahgoub transform, we have 

𝑀  
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  

= 𝑣 𝑒−𝑣𝑡
∞

0

 
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  𝑑𝑡 …… .…………… . (19) 

Now by equations (18) and (19), we get 

𝑣  𝑒−𝑣𝑡
∞

0

 
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  𝑑𝑡 =

2𝑣

  4 + 𝑣 
 

Taking 𝑣 → 2 in above equation, we have 

2 𝑒−2𝑡
∞

0

 
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  𝑑𝑡 =

4

  6 
 

⇒ 𝐼 =  𝑒−2𝑡
∞

0

 
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  𝑑𝑡 =

2

  6 
 

⇒ 𝐼 =  𝑒−2𝑡
∞

0

 
𝑑

𝑑𝑡
𝑒𝑟𝑓 2 𝑡  𝑑𝑡 =  

2

3
. 

7.6 Evaluate the improper integral  

𝐼 =  𝑒−5𝑡 𝑒𝑟𝑓  𝑡 ∗ 𝑒𝑟𝑓 𝑡 
∞

0

𝑑𝑡. 

By convolution theorem of Mahgoub transform, we have  

𝑀 𝑒𝑟𝑓  𝑡 ∗ 𝑒𝑟𝑓 𝑡 =
1

𝑣
𝑀 𝑒𝑟𝑓  𝑡  𝑀 𝑒𝑟𝑓  𝑡   

=
1

𝑣
 

1

  1 + 𝑣 
  

1

  1 + 𝑣 
 =

1

𝑣 1 + 𝑣 
. …………… . (20) 

Now by the definition of Mahgoub transform, we have 

𝑀 𝑒𝑟𝑓  𝑡 ∗ 𝑒𝑟𝑓 𝑡   

= 𝑣 𝑒−𝑣𝑡
∞

0

 𝑒𝑟𝑓  𝑡 ∗ 𝑒𝑟𝑓 𝑡 𝑑𝑡 ………………… . . (21) 

Now by equations (20) and (21), we get 

𝑣  𝑒−𝑣𝑡
∞

0

 𝑒𝑟𝑓  𝑡 ∗ 𝑒𝑟𝑓 𝑡 𝑑𝑡 =
1

𝑣 1 + 𝑣 
………… . . (22) 

Taking 𝑣 → 5 in above equation, we have 

5 𝑒−5𝑡
∞

0

 𝑒𝑟𝑓  𝑡 ∗ 𝑒𝑟𝑓 𝑡 𝑑𝑡 =
1

30
 

⇒ 𝐼 =  𝑒−5𝑡
∞

0

 𝑒𝑟𝑓  𝑡 ∗ 𝑒𝑟𝑓 𝑡 𝑑𝑡 =
1

150
. 

VIII. CONCLUSIONS 

In this article, we have successfully discussed the Mahgoub 

transform of error function. The given numerical applications 

in application section show the advantage of Mahgoub 

transform of error function.  
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