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Abstract: Integral equations have different applications such as 
determination of potentials, system identification, spectroscopy 
and seismic travel time. In this paper, authors have solved non-
linear first kind Volterra integral equations (V.I.E.) using Taylor 
series method. Authors have been considered two numerical 
examples for explaining the complete methodology. Results of 
numerical examples show that Taylor series method is very 
useful and effective numerical method for handling the problem 
of obtaining the primitives of non-linear first kind V.I.E. 
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I. INTRODUCTION 

ith the remarkable advancement in different field of 
engineering, science, and technology, today more than 

ever before, the study of integral equations has become 
essential. For, to have an exhaustive understanding of subjects 
like fluid dynamics, numerical analysis, waves and 
electromagnetic, chemistry, physics, statistics, mechanics, 
heat transfer, chemical science, mathematical biology, 
aerodynamics, electricity the knowledge of determining the 
solution to integral equations is absolutely necessary. These 
integral equations may be linear or nonlinear. Finding and 
interpreting the solutions of these integral equations is 
therefore a central part of applied mathematics and a thorough 
understanding of integral equations is essential for any 
scholars. Aggarwal with others [1-5] used different integral 
transformations for obtaining the solutions of V.I.E. of second 
kind. The primitives of first kind V.I.E. were obtained by 
Aggarwal et al. [6-11] by applying Laplace; Kamal; 
Mahgoub; Aboodh; Elzaki; Shehu integral transformations on 
them. Aggarwal and others scholars [12-18] determined the 
exact solution of famous problem of mechanics (Abel’s 
problem) by applying Laplace; Kamal; Mohand; Aboodh; 
Sumudu; Shehu; Sadik integral transformations on it. This 
problem was a special case of V.I.E. 

The goal of this paper is to determine the solutions of non-
linear first kind V.I.E. by applying Taylor series method on 
them. 

II. POWER SERIES (TAYLOR SERIES) OF 
FREQUENTLY USED FUNCTIONS IN ENGINEERING 

AND MATHEMATICAL SCIENCE 
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III. METHOD OF TAYLOR’S SERIES FOR THE 
SOLUTION OF NON-LINEAR FIRST KIND V.I.E. 

The non-linear first kind V.I.E. is given by [19, 21] 

𝑓(𝜏) = 𝛿 ∫ 𝐾(𝜏, 𝑡) 𝜑(𝑡) 𝑑𝑡    (1) 

where 
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𝑓(𝜏) = 𝑘𝑛𝑜𝑤𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

𝛿 = 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
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Suppose the solution 𝜑(𝜏) of equation (1) is analytic so it can 
be represent in the form of Taylor’s series as  

𝜑(𝜏) = ∑ 𝛽 𝜏∞      (2) 

Use equation (2) in equation (1), we have 

𝑇(𝑓(𝜏))  = 𝛿 ∫ 𝐾(𝜏, 𝑡)(∑ 𝛽 𝜏∞ ) 𝑑𝑡   (3) 

where 𝑇(𝑓(𝜏)) is the Taylor series expansion of the function 
𝑓(𝜏).  

Equation (3) can be written as 
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On simplification, (4) gives a system of algebraic equations in 
terms of (𝛽 , 𝛽 , 𝛽 , 𝛽 , … … … … ). After solving this system, 
we get a chain of coefficients namely 
(𝛽 , 𝛽 , 𝛽 , 𝛽 , … … … … ).The required solution of equation (1) 
may be obtained by using these coefficients in equation (2).  

Example: 3.1 Consider the following non-linear first kind 
V.I.E. 

𝑒 − 𝜏 − = ∫ (𝜏 − 𝑡) (𝜑(𝑡)) 𝑑𝑡   (5) 

Suppose the solution 𝜑(𝜏) of equation (5) is analytic so it can 
be represent in the form of Taylor’s series as  

𝜑(𝜏) = ∑ 𝛽 𝜏∞      (6) 

Use equation (6) in equation (5), we have 
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Now on simplification, (8) gives a system of following 
algebraic equations 
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After solving the system (9), we get 
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 and 

𝛽 = −1
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    (10) 

Using equation (10) in equation (6), we get the required 
solutions of equation (5) given by 
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Example: 3.2 Consider the following non-linear first kind 
V.I.E. 

+ + + = ∫ (𝜏 − 𝑡)(𝜑(𝑡)) 𝑑𝑡   (11) 

Suppose the solution 𝜑(𝜏) of equation (11) is analytic so it 
can be represent in the form of Taylor’s series as  

𝜑(𝜏) = ∑ 𝛽 𝜏∞      (12) 

Use equation (12) in equation (11), we have  
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Equation (13) can be written as 
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Now on simplification, (14) gives a system of following 
algebraic equations 
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= 𝛽 −

= 𝛽 𝛽 − 𝛽 𝛽

=
−
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0 =
−

0 =
− ⎭
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After solving the system (15), we get 

 

𝛽 = 1
𝛽 = 1
𝛽 = 0
𝛽 = 0
𝛽 = 0
𝛽 = 0⎭

⎪
⎬

⎪
⎫

      (16) 

Using equation (16) in equation (12), we get the required 
solutions of equation (11) given by 

𝜑(𝜏) = 1 + 1. 𝜏 + 0. 𝜏
+0. 𝜏 + 0. 𝜏 + 0. 𝜏 + ⋯ … … . .

= 1 + 𝜏. 

IV. CONCLUSIONS 

In the present paper, authors fruitfully discussed the Taylor 
series method for determining the solution of non-linear first 
kind V.I.E. The complete methodology explained by taking 
numerical examples. Results of numerical examples depict 
that Taylor series method is very effective method for 
determining the solution of non-linear first kind V.I.E. without 
large computational work. 
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