
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 1

Agent-Based Automatic Code Generator for Control
Systems Using the Algorithmic State Machine Chart

Approach
Uju Mokwe V.1, Stephen U. Ufoaroh2, Obiora-Dimson Ifeyinwa3, Kebiru Abu 4

1,2,3,4 Department of Electronic and Computer Engineering, Nnamdi Azikiwe University Awka, Anambra State, Nigeria

Abstract: This work involves developing an agent based
automatic code generator that can generate automatically,
control software that can run in a microcontroller and perform
the control action specified in a given Algorithmic State Machine
(ASM) chart for control systems. The methodologies adopted are
waterfall model and the multi agent software engineering
methodology. The automatic code generator is developed using
Java programming language. A typical control system was used
to show how the automatic code generator works. The ASM
chart representing the control system is converted into State
Transition Table (STT). The STT is converted into a fully
expanded STT. The state agents on the automatic code generator
relevant to the present ASM chart are initialized with output
code(s) taken from the fully expanded STT derived from the
ASM chart. The generator will generate the source code when
the generate source code button is clicked. Then the source code
realized (in C language) was compiled using C compiler and a
hex code was gotten. A prototype of the control system specified
in the ASM chart used in this work was designed using
simulation software named Proteus. The prototype comprises the
Passive Infra Red (PIR) sensor, crystal oscillator, Peripheral
Interface Controller (PIC) microcontroller (Pic16F877A), Light
Emitting Diode (LED) (representing the light) and motor
(representing the fan). The hex code is fitted into the PIC
microcontroller. When the simulation is run, the PIR sensor
accepts two inputs, 0 and 1. If the input is 0, the motor and LED
will be off, but if it is 1, the LED and motor will be on. This
shows that the hex code of the source code generated by the
automatic code generator is correct.

Keywords: Code generator, Automatic programming, Multi-
agent, Microcontroller, Algorithmic state machine, State
transition table, PIC microcontroller.

I. INTRODUCTION

utomatic code generator originated from the term
automatic programming. Generally automatic

programming identifies a type of computer programming in
which some mechanism generates a computer program to
allow human programmers to write the code at a higher
abstraction level [1]. Furthermore, Automatic Code
Generation (ACG) allows software engineers to create more
concise, maintainable, and reusable solutions, ultimately
improving their productivity. ACG has significant benefits
and profound economic impact in the software development
field and thus is everywhere. Designers and developers of

Automatic Code Generators designed and developed
automatic code generators for a variety of applications.

In an earlier study, [2] identified five classes of intelligent
agents namely one class of process control agent and four
classes of state control agents as being sufficient for use in the
implementation of any process control system which can be
represented as an Algorithmic State Machine (ASM) chart. [2]
also stated that these five intelligent agents form the basis for
automated code generation for process control and monitoring
because their codes are object-oriented and reusable and when
both the process control software and the process monitoring
software can be automatically generated, the platform that
offers this facility becomes unique to any process control
system developer interested in automatic code generation.
Based on these developments, this work used agent-based
approach to develop and implement an automatic code
generator that generates appropriate software code for any
agent-based control system specified in an Algorithm State
Machine chart.

The role and responsibility of agent-based control systems is
ever increasing. Associated with this increase, is the need for
a robust and reusable code which would automate and reduce
software design for agent based control systems, presents a
big challenge to the software developing industry. To solve
this problem, the need to create a software that can easily
automate the generation of this reusable codes is important.
The aim of this work is to develop an agent-based automatic
code generator for control systems using the ASM chart
approach. The rest of the paper is structured as follows.
Section II presents the agent based technology, Automatic
code generation and Algorithm state machines (ASM) chart
for control systems. Section III describes the methodology
adopted. Data presentation and results are presented in
Section IV. We conclude the paper in section V by
highlighting the main findings of the paper.

II. LITERATURE REVIEW

2.1 Agent-based Technology

An Agent-based model (ABM) is one of a class of
computational models for simulating the actions and
interactions of autonomous agents (both individual and

A

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 2

collective entities such as organizations or groups) with a
view to assessing their effects on the system as a whole. It
combines elements of game theory, complex systems,
emergence, computational sociology, multi-agent systems,
and evolutionary programming. Monte Carlo methods are
used to introduce randomness. Particularly within ecology,
ABMs are also called individual-based models (IBMs), and
individuals within IBMs may be simpler than fully
autonomous agents within ABMs. A review of recent
literature on individual-based models, agent-based models,
and multi-agent systems shows that ABMs are used on non-
computing related scientific domains including biology,
ecology and social science [3]. Agent-based modeling is
related to, but distinct from, the concept of multi-agent
systems or multi-agent simulation in that the goal of ABM is
to search for explanatory insight into the collective behavior
of agents obeying simple rules, typically in natural systems,
rather than in designing agents or solving specific practical or
engineering problems [3].

Agent-based models are a kind of micro-scale model [4] that
simulates the simultaneous operations and interactions of
multiple agents in an attempt to re-create and predict the
appearance of complex phenomena. The process is one of
emergence from the lower (micro) level of systems to a higher
(macro) level. As such, a key notion is that simple behavioral
rules generate complex behavior. This principle, known as
K.I.S.S. ("Keep it simple, stupid"), is extensively adopted in
the modeling community. Another central tenet is that the
whole is greater than the sum of the parts. Individual agents
are typically characterized as boundedly rational, presumed to
be acting in what they perceive as their own interests, such as
reproduction, economic benefit, or social status, using
heuristics or simple decision-making rules. ABM agents may
experience "learning", adaptation, and reproduction. Most
agent-based models are composed of: (1) numerous agents
specified at various scales (typically referred to as agent-
granularity); (2) decision-making heuristics; (3) learning rules
or adaptive processes; (4) an interaction topology; and (5) an
environment. ABMs are typically implemented as computer
simulations, either as custom software, or via ABM toolkits,
and this software can be then used to test how changes in
individual behaviors will affect the system's emerging overall
behavior. The idea of agent-based modeling was developed as
a relatively simple concept in the late 1940s. Since it requires
computation-intensive procedures, it did not become
widespread until the 1990s. [4]

2.2 Automatic Code Generation

The notion automatic code generation (ACG) envelopes a
number of different techniques aimed at simplifying the task
of writing a code. Apart from specific implementation details
these techniques differ in the level of abstraction exposed to
the developer: a very low level of abstraction is given by
template-based techniques such as code completion or code

insertion. These allow for the generation of code structures
with a low complexity (e.g., getters/setters), which are
inserted into the code by the user on an explicit (calling an
editor function) or implicit (the editor recognizes the
beginning of a construct and completes it) basis. This is a very
general approach that can be applied in every programming
language and in any kind of desired application. Code
transformation represents a higher level of abstraction, where
a piece of code is translated from a source language into a
target language [5].

Code generators exist for various types of applications in
computer science, for example, parser generators, database
generators, or unified modeling language (UML) tools,
rapidly generating production code and saving development
costs. Apart from saving time by generating code which
would otherwise have to be implemented manually, correct
generators deliver correct code; additionally, all
developmental iterations (with alterations to the specification)
can be handled in the source language, again saving time.
While these principles and methods are largely applied in the
area of software development, hardware developers are
supported by very few specific tools like Internet Protocol
(IP)-Core Generators or C-to-hardware compilers, covering
only a very small area of what could be done with ACGs
(Automatic Code Generators). Each of these tools utilizes
code generators for some hardware description language in
their specific area, however, this functionality is not exposed
to a developer wishing to implement own code generator [5].

2.3 Algorithm State Machines (ASM) Chart for Control
Systems

 ASM is an algorithm that consists of a few steps, which is
used to simplify a sequential digital system. An ASM chart
resembles a conventional flow chart but the difference is, a
conventional flow chart does not have timing relationships but
the ASM takes timing relationship into account. An ASM
chart describes the sequence of events as well as the timing
relationship between the states of a sequential controller and
the events that occur while going from one state to the other.
It is employed to design a sequential circuit having a large
number of external inputs because with a large number of
external inputs it becomes very difficult to use state tables for
designing the circuit. ASM Chart Notations: The different
blocks used in the ASM chart are:

 The state box
 The decision box
 The conditional box [6]

2.4 Review of Related literatures

Xiang-Hu et al [7] proposed an algorithm which can generate
code automatically by analyzing the characteristics of flow-
chart and they put forward a structure identification algorithm
for structured flowchart, after then taking the flowchart
identified in previous step as input. They verified the

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 3

correctness and effectiveness of algorithms proposed using
enumeration iteration strategy. The work did not use agent-
based approach.

McBurney and McMillan [8] developed a documentation
generator which is a programming tool that creates
documentation for software by analyzing the statements and
comments in the software’s source code. In this paper, they
proposed a technique that includes this context by analyzing
how the Java methods are invoked. Also they hypothesize that
existing documentation generators would be more effective if
they included information from the context of the methods, in
addition to the data from within the methods. This work is
strictly on generating automatic code generator for
documentation not for agent based control systems.

Sadiq et al [9] proposes an approach based on model driven
architectures, multi-agent systems (MAS) for DSS (Decision
Support System) development. They are particularly
interested in this work in developing a multi-agent based
extraction, transformation and loading process (ETL),
retrieving, extracting and integrating external data into Data
Warehouses (DW) and generating automatically the DW
code. This work did not go into designing an automatic code
generator.

Inyiama et al [2] also considered the use of multi-agents
which has facilitated the level of complexity encountered in
industrial automation. In this paper, agent types and
classification with respect to this design method were
discussed and an industrial control and monitoring examples
were used to showcase the code generator multi-agent based
design method envisaged in this paper. This work did not
implement the automatic code generator.

Adenuga et al [10] developed an automated agent-based
control system methodology (ACSME) and was proposed for
Reconfigurable Bending Press Machine (RBPM) application
due to an ongoing research. The proposed methodology will
help manufacturer of RBPM to address the need for more
flexible control systems and to demonstrate their industrial
flexibility in several reconfigurable machines applications.
Consequently, to facilitate the use of agent technology, there
must be design methodology that allows a non-expert in agent
technology to design an agent-based control system given the
specification of the control system. This work did not go into
designing an automatic code generator.

Pardeed and Rajesh [11], using Class Diagram, Use cases and
Activity Diagram stated that in Regression testing, test case
generation is a process of generating test cases from the
existing test suite to ensure that modifications made in the
system have not affected its existing functionality. In this
research, they have used the combination of UML class
diagram, use cases and activity diagram to identify changes at
both syntax and semantics level. They compared UML class
diagrams, use cases and activity diagrams of old and modified

code to identify these changes. The work did not use agent-
based approach.

Palau, et al [12] presents a methodology to assess the
prognostics in modern fleets of assets. They investigated the
cost, reliability and implications of using different multi-agent
systems architectures for collaborative failure prediction and
maintenance optimization in large fleets of industrial assets.
The work did not go into designing an automatic code
generator.

III. METHODOLOGY

In this work, the water fall model was used to guide the
development of the multi agent based system. Since the
software designed in this work is for multi-agent based
system, the methodology used is the multi-agent software
engineering methodology. This methodology is made for
agent design and consists of both the analysis phase and
design phase [13]. The analysis phase captures user
requirements/roles and presents the sequence of events with
charts such as the Algorithm State Machine (ASM) chart.
Once this is accomplished, the design phase transforms the
defined roles into agent types and implements the complete
system configuration.

3.1 System Design

Multi-agent systems can be realized using any kind of
programming language. In particular, object-oriented
languages are considered a suitable means because the
concept of agent is not too distant from the concept of object
[14]. In fact, agents share many properties with objects such
as encapsulation, inheritance and message passing. However,
agents also differ from objects in several key ways; they are
autonomous (i.e. they decide for themselves whether or not to
perform an action on request from another agent); they are
capable of a flexible behavior; and each agent of a system has
its own thread of control. Agent-oriented programming
languages are a new class of programming languages that
focus on taking into account the main characteristics of multi-
agent systems [14]. Minimally, an agent-oriented
programming language must include some structure
corresponding to an agent, but many also provide mechanisms
for supporting additional attributes of agency such as beliefs,
goals, plans, roles and norms.

Object orientation is thus very useful in that it leads to a high
number of software codes that can be re-used in different
unrelated projects featuring agent-based design. One of the
key components of multi-agent systems is communication. In
fact, agents need to be able to communicate with users, with
system resources, and with each other if they need to
cooperate, collaborate, and negotiate and so on. In particular,
agents interact with each other by using some special
communication languages, called agent communication
languages. In this work Java programming language is used.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 4

3.2 Software Architecture

The diagram in Fig. 1 shows the main architectural elements
of the platform. The platform is composed of agent containers
that can be distributed over the network. Agents live in
containers which are the Java processes that provide the run-

time and all the services needed for hosting and executing
agents [15]. There is a special container, called the main
container (i.e the process agent container), which represents
the bootstrap point of a platform: it is the first container to be
launched and all other containers must join to a main
container by registering with it.

Fig. 1: Architectural elements of the multi agent based platform [14]

The programmer identifies containers by simply using a
logical name; by default the main container is named ‘Main
Container’ while the others are named ‘Container-1’,
‘Container-2’, etc. Command-line options are available to
override default names. As a bootstrap point, the main
container has the following special responsibilities [16]:

 Managing the container table (CT), which is the
registry of the object references and transport
addresses of all container nodes composing the
platform

 Managing the Global Agent Descriptor Table
(GADT), which is the registry of all agents present in
the platform, including their current status and
location;

 Hosting the Agent Management System (AMS) and
the Directory Facilitator (DF), the two special agents
that provide the agent management and white page
service, and the default yellow page service of the
platform, respectively.

When the main-container is launched, two special agents are
automatically instantiated and started by the software, whose
roles are defined by the Agent Management System:

 1. The Agent Management System (AMS) is the agent that
supervises the entire platform. It is the contact point for all
agents that need to interact in order to access the white pages
of the platform as well as to manage their life cycle. Every
agent is required to register with the AMS (automatically
carried out by agent start-up) in order to obtain a valid Agent
Identity.

 2. The Directory Facilitator (DF) is the agent that
implements the yellow pages service, used by any agent
wishing to register its services or search for other available
services. The DF also accepts subscriptions from agents that
wish to be notified whenever a service registration or
modification is made that match some specified criteria.
Multiple DFs can be started concurrently in order to distribute
the yellow pages service across several domains. These DFs
can be federated, if required, by establishing cross-
registrations with one another which allow the propagation of
agent requests across the entire federation.

The agent addresses are transport addresses inherited by the
platform, where each platform address corresponds to an MTP
(Message Transport Protocol) end point where compliant
messages can be sent and received.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 5

The IMTP (Internal Message Transport Protocol) is
exclusively used for exchanging messages between agents
living in different containers of the same platform. It is
considerably different from inter-platform MTPs.

The overall design process involved in the automatic code
generator is as shown below:

 Adapt the State Transition Table (STT) to Fully
Expanded State Transition Table

 Carryout assignment of State and Process agent
 Develop control logic for agents initialization
 Develop reusable codes for multi agent control
 Output code for compilation to be fitted into

microcontroller

3.3 Developing Algorithm

This is the first step in program design. It implies listing the
steps involved in developing the software from beginning to
the end. In this work, the algorithm is as stated below:

 Beginning of program
 Definition of process agent and state agent classes

and methods
 Initialization of process agent and state agents
 Activation of process control agent
 Process control agent reads process control inputs
 Process control agents activates the state agents

specified in the inputs

 Active state agent releases the next output pattern to
process agent

 End

IV. RESULTS AND DISCUSSION

4.1 Implementing the system

With automatic code generation, a control system can be
automated to perform its function by simply applying the
codes that shall be developed here to this system. By
supplying the relevant input codes that would initialize this
automatic code generator, the software code with the
information to handle the function is automatically generated
and when executed, will make the system function in its
capacity. This automatic code generator is aimed at reducing
software design effort from scratch when the need to design a
new control system arises.

Before the automatic code generator software is used, the
Engineer automating the control system is required to have an
ASM chart. This ASM chart is converted to State Transition
Table (STT). The STT is converted to Fully Expanded State
Transition Table (FESTT). Then it is from this FESTT that
the state agents are gotten, and these are the inputs to the
automatic code generator. An ASM chart of a system that
lights up a room and turns the fan on when there is an
occupant and turns off the light and fan when there is no
occupant is depicted in fig. 2

Fig. 2: Diagram Depicting the ASM Chart

Fan/Light
off

Any
Occupant?

(Q1)

Fan/Light On

Is Occupant
Still in? (Q2)

ST0

ST1

0 1

1
1

0

0

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 6

The working principle of the ASM chart is represented in fig.
2:

i. At state ST0, fan and light are off, the control system
checks to see if there is any occupant (Q1) in the
room. If there is no occupant in the room, it goes

back to ST0. If there is an occupant, it moves to state
ST1.

ii. At state ST1, fan and light are on, the control system
checks to see if the occupant in the room is still there
(Q2). If yes it goes back to state ST1, if no it goes to
state ST0 and the entire cycle is repeated.

Table 1: The State Transition Table (STT)

Link path

Present state
Name Code

Qualifiers
Q1 Q2

Next state
Name Code

State Output
Fan Light

L1 ST0 0 0 - ST0 0 0 0

L2 ST0 0 1 - ST1 1 0 0

L3 ST1 1 - 1 ST1 1 1 1

L4 ST1 1 - 0 ST0 0 1 1

Table 2: Fully Expanded State Transition Table

Link Path

Present State

Name Code

Qualifiers

Q1 Q2

Next State

Name Code

State Output

Fan Light

Hex
Output

State
agent

L1 ST0 0 0 0 ST0 0 0 0 0

State
agent
Zero

L1 ST0 0 0 1 ST0 0 0 0 0

L2 ST0 0 1 0 ST1 1 0 0 4

L2 ST0 0 1 1 ST1 1 0 0 4

L3 ST1 1 0 1 ST1 1 1 1 7

State
agent
One

L3 ST1 1 1 1 ST1 1 1 1 7

L4 ST1 1 0 0 ST0 0 1 1 3

L4 ST1 1 1 0 ST0 0 1 1 3

From table 2, two state agents are derived; state agent zero
and state agent one. These are the inputs to the automatic code
generator.

The automatic code generator software is developed and
executed. The screen snap shots of different stages of the

execution were shown and described in figures 3, 4, 5, 6, 7, 8,
9, 10, 11 and 12. These snap shots showed how the automatic
code generator generated the source code that will automate
the control system specified in the ASM chart in fig. 1.

Fig. 3: User Interface of the Automatic Code Generator Software

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 7

From the fig. 3, the select state Agent code button enables the
initialization of the state Agents from state agent 0 to state
agent 7. This software is limited to Multi Agent Systems with
only 8 state agents. For each state agent, the next state code,
state output and conditional output (if any) is inputted from
the left, in fig. 6. An alternative to this is to upload a text file
containing the concatenation of the state agent, the next state
code, state output and conditional output (if any) separated by
commas. The upload Agent class file button is used for this

purpose. The software incorporates a virtual test button to
allow the user to view the generated fully expanded STT. The
values for a particular link path can also be inputted and tested
to see if the output generated, matches with what is contained
in the fully expanded STT. The generate source code button
enables the generation of the source code which when
compiled would be burnt into a microcontroller for the
execution of the programme instructions.

Fig. 4: Screen showing when Select Agent Code Button is Clicked

When the Select State Agent Code button is right clicked as
depicted in fig. 4, the list of the state agents are displayed.
From table 2, two state agents are derived; state agent zero
and state agent one. To fill in the state agents, the one to be
filled is highlighted and clicked. In fig. 5, the State Agent
Zero is highlighted and clicked. In fig. 6, the values of state
agent zero are inputted. The information filled in is gotten
from the FESTT in table 2. These are 000, 000, 100 and 100.
The allocation for these inputs has eight digits maximum, but

our inputs have three digits. The inputs are concatenation of
the next state and the state output for this particular ASM
chart in fig. 1. So in filling in the input, the first five digits are
filled with zeroes, and then followed by the three digits of the
inputs. In fig. 7, the state agent one is highlighted and clicked.
In fig. 8, the values are inputted. It is filled in with these
information, 111, 111, 011 and 011 as done for state agent
zero.

Fig. 5: Screen showing when State Agent Zero is highlighted.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 8

Fig. 6: Screen showing when the values of State Agent Zero are inputted.

Fig. 7: Screen showing when State Agent One is highlighted.

Fig. 8: Screen showing when the values of State Agent One are inputted.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 9

Then after the filling in of the inputs, the done button is
clicked and information showing success is displayed on the

screen. This is shown in fig. 9.

Fig. 9: Screen showing when Done Button is clicked.

Fig. 10: Screen showing when Virtual Test Button is Clicked.

In fig. 11, FESTT would be generated when Decode All
button is clicked. Decode Button generates the information for
a particular link path, when clicked while Upload File button

uploads the file where the information from the engineer’s
FESTT is stored, when clicked.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 10

Fig. 11: Screen showing when Decode All Button is clicked.

Fig. 12: Screen Showing when Generate Source Code Button is Clicked.

Fig. 12 depicts the source code or the program code
automatically generated by the automatic code generator. The
programming language used for the generated source code is
C programming language. The source code generated by the
automatic code generator will then be compiled with C
compiler known as MiKro C Pro and this hex code will be
burnt into a microcontroller. The microcontroller chosen for

the test execution and simulation is a PIC microcontroller.
The memory architecture of the source code is specially
designed for PIC microcontrollers, thus subsequent
improvement should enable the selection of other
microcontrollers. The simulation environment is Proteus.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 11

Fig. 13: Proteus Representation of the System with ASM chart of Fig. 1

In the fig. 13, the microcontroller used is the Pic16F877A,
which is clocked at 32MHz. A PIR (Passive Infra Red) sensor
is used to sense human presence in the room. The PIR sensor
used in the simulation has 4 pins namely: VCC, OUT, GND
and Test pin. The VCC pin is connected to 5V source, the
OUT pin is connected to pin RD1 of the PIC microcontroller.
The GND pin is connected to ground. The RD1 pin of the
microcontroller is used as the input to sense when there is
human presence, but because this is a simulation, the PIR
sensor module for Proteus has a “Test pin” which is used to
simulate human presence. When a HIGH(Logic 1) is sent to
this pin using the logic probe connected to it, the RD1 pin
goes high which means there is human presence and the LED
turns ON and the motor (representing the fan) rotates. When a
LOW (Logic 0) is sent, the RD1 pin goes low which means
there is no human presence, the LED turns off and the motor
stops rotating.

V. CONCLUSION

Automated Process control and monitoring using multi-agent
has become popular in recent time. Automatic code generator
makes it less tasking and time consuming to generate process
control codes. Thus a researcher with any automation design
problem that can be tailored to an ASM chart can benefit from
the automated code generator design example showcased in
this paper.

The method discussed here is generic and is not limited to
monitoring agent-based process control systems. Other

process control systems designed using any other method can
be monitored using this method, except that the ASM chart
and the modified STT must be provided to aid the design of
the agent monitoring system. Automatic Code Generator
(ACG) allows software engineers to create more concise,
maintainable and reusable solutions ultimately improving
their productivity.

REFERENCES

[1] Mur, R.A. (2006) Automatic Inductive Programming, ICML 2006
Tutorial.

[2] Inyiama, H. C., Obiora-Dimson, C .I. and Okezie, C.C. (2015).
Designing an automated code generator for multi-agent based
process control and monitoring”, International Journal of
Advanced Multidisciplinary Research Reports. Volume I No. 1.
Maiden Edition.

[3] Niazi, M. and Hussain, A.(2011). Agent-based Computing from
Multi-agent Systems to Agent-Based Models: A Visual
Survey (PDF). Sciento metrics. Springer. 89 (2): pp 479–499.
doi:10.1007/s11192-011-0468-9.

[4] Gustafsson, L. and Mikael, S. (2010). Consistent micro, macro,
and state-based population modeling. Mathematical
Biosciences.225(2): pp 94–107. doi:10.1016/j.mbs.2010.02.003.

[5] Pohl, C., Paiz, C., and Porrmann, M. (2009) vMAGIC—Automatic
Code Generation for VHDL.. International Journal of
Reconfigurable Computing
http://dx.doi.org/10.1155/2009/205149. Volume 2009 (2009),
Article ID 205149, 10 pages. Heinz Nixdorf Institute, University
of Paderborn, Fürstenallee 11, D – 33102 Paderborn, Germany.

[6] Hill, J. (2004) Brief Introduction to ASM Charts
[7] Xiang-Hu Wu, Ming-Cheng Qu, Zhi-Qiang Liu and Jian-Zhong

Li, (2011) Research and Application of Code Automatic
Generation Algorithm Based on Structured Flowchart. Journal of

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume IX, Issue VI, June 2020 | ISSN 2278-2540

www.ijltemas.in Page 12

Software Engineering and Applications 4, pp 534-545.
doi:10.4236/jsea.2011.49062.

[8] McBurney, P.W. and McMillan, C. (2014) “Automatic
Documentation Generation via Source Code Summarization of
Method Context”. ACM 978-1-4503-2879-1/14/05 $15.00.

[9] Sadiq, A., El Fazziki, A. and Sadgal, M. (2014). “An Agent
Based Etl System: Towards an Automatic Code Generation”. DOI:
10.5829/idosi.wasj.2014.31.05.268.. World Applied Sciences
Journal 31 (5): pp 979-987.

[10] Adenuga, O.T., Mpofua, K. and Kanisurua, A.M. (2016). Agent-
based control system methodology for Reconfigurable Bending
Press Machine, ScienceDirect. 49th CIRP Conference on
Manufacturing Systems (CIRP-CMS 2016). Procedia CIRP 57, pp
362 – 367. doi: 10.1016/j.procir.2016.11.063

[11] Pardeep Kumar Arora and Rajesh Bhatia, (December, 2017)
“Agent-Based Regression Test Case Generation using Class

Diagram, Use cases and Activity Diagram”, 6th international
conference on smart computing and communications, ICSCC
2017, 7-8 kurukshetra, India.

[12] Palau, A. S., Parlikad, A. K. and Dhada, M. (2019). “Multi-Agent
System Architectures for Collaborative Prognostics”. Journal of
Intelligent Manufacturing. DOI: 10.1007/s10845-019-01478-9.

[13] Obiora-Dimson I. and Inyiama H. C. (2017). Re-Engineering
Complex Process Control Systems Using Sub-Process Agents.
Journal of Engineering Research and Application , pp 53-61.

[14] Fabio Bellifemine, G. C. (2007). Developing Multi-Agent Systems
with JADE. John Wiley & Sons Ltd.

[15] Hayzelden, A. A. (2001). Agent Technology for Communication
Infrastructures. John Wiley & Sons.

[16] Genesereth, M. A. (1994.). Software Agents. Communications of
the ACM, 37(7):, pp. 48–53.

