On The Existence of Solution of Diophantine Equation $181^x + 199^y = z^2$

Sudhanshu Aggarwal^{1*}, Swarg Deep Sharma², Aakansha Vyas³

¹Assistant Professor, Department of Mathematics, National P.G. College, Barhalganj, Gorakhpur-273402, U.P., India ²Assistant Professor, Department of Mathematics, Nand Lal Singh College Jaitpur Daudpur Constituent of Jai Prakash University Chhapra-841205, Bihar, India

³Assistant Professor, Noida Institute of Engineering & Technology, Greater Noida-201306, U.P., India

Abstract: In this article, authors discussed the existence of solution of Diophantine equation $181^x + 199^y = z^2$, where *x*, *y*, *z* are non-negative integers. Results show that the consider Diophantine equation of study has no non-negative integer solution.

Keywords: Prime number; Diophantine equation; Solution, Integers.

Mathematics Subject Classification: 11D61, 11D72, 11D45.

I. INTRODUCTION

iophantine equations are those equations of theory of numbers which are to be solved in integers. Diophantine equations have many important applications in algebra, analytical geometry and trigonometry [4, 6]. These equations give us an idea to prove the existence of irrational numbers. Acu [1] studied the Diophantine equation $2^x + 5^y = z^2$ and proved that $\{x = 3, y = 0, z = 3\}$ and $\{x = 2, y = 1, z = 3\}$ are the solutions of this equation. Kumar et al. [2] considered the non-linear Diophantine equations $61^x + 67^y = z^2$ and $67^{x} + 73^{y} = z^{2}$. They showed that these equations have no non-negative integer solution. Kumar et al. [3] studied the non-linear Diophantine equations $31^x + 41^y = z^2$ and $61^x + z^2$ $71^{y} = z^{2}$. They determined that these equations have no nonnegative integer solution. Rabago [5] discussed the open problem given by B. Sroysang. He showed that the Diophantine equation $8^x + p^y = z^2$, where x, y, z are positive integers has only three solutions namely $\{x = 1, y = 1, z = 1\}$ $\{x = 2, y = 1, z = 9\}$ and $\{x = 3, y = 1, z = 23\}$ 5}, for p = 17. The Diophantine equations $8^{x} + 19^{y} = z^{2}$ and $8^{x} + 13^{y} = z^{2}$ were studied by Sroysang [7-8]. He proved that these equations have a unique non-negative integer solution namely $\{x = 1, y = 0, z = 3\}$. Sroysang [9] proved that the Diophantine equation $31^x + 32^y = z^2$ has no nonnegative integer solution.

The main aim of this article is to discuss the existence of solution of Diophantine equation $181^x + 199^y = z^2$, where *x*, *y*, *z* are non-negative integers.

II. PRELIMINARIES

Lemma: 1 The Diophantine equation $181^x + 1 = z^2$, where x, z are non-negative integers, has no solution in non-negative integers.

Proof: Since 181 is an odd prime so 181^x is an odd number for all non-negative integer x.

 $\Rightarrow 181^{x} + 1 = z^{2}$ is an even number for all non-negative integer *x*.

 \Rightarrow *z* is an even number.

$$\Rightarrow z^2 \equiv 0 \pmod{3} \text{ or } z^2 \equiv 1 \pmod{3} \tag{1}$$

Now, $181 \equiv 1 \pmod{3}$

 $\Rightarrow 181^x \equiv 1 \pmod{3}$, for all non-negative integer x

 $\Rightarrow 181^{x} + 1 \equiv 2 \pmod{3}$, for all non-negative integer x

$$\Rightarrow z^2 \equiv 2 \pmod{3}$$

Equation (2) contradicts equation (1). Hence Diophantine equation $181^x + 1 = z^2$ has no non-negative integer solution.

(2)

Lemma: 2 The Diophantine equation $199^{y} + 1 = z^{2}$, where y, z are for all non-negative integers, has no solution in non-negative integers.

Proof: Since 199 is an odd prime so 199^{y} is an odd number for all non-negative integer *y*.

 $\Rightarrow 199^{y} + 1 = z^{2}$ is an even number for all non-negative integer y

 \Rightarrow *z* is an even number

$$\Rightarrow z^2 \equiv 0 \pmod{3} \text{ or } z^2 \equiv 1 \pmod{3} \tag{3}$$

Now, $199 \equiv 1 \pmod{3}$

 $\Rightarrow 199^y \equiv 1 \pmod{3}$, for all non-negative integer y

 $\Rightarrow 199^{y} + 1 \equiv 2 \pmod{3}$, for all non-negative integer y

 $\Rightarrow z^2 \equiv 2(mod3) \tag{4}$

Equation (4) contradicts equation (3). Hence Diophantine equation $199^{y} + 1 = z^{2}$ has no non-negative integer solution.

Main Theorem: The Diophantine equation $181^x + 199^y = z^2$, where *x*, *y*, *z* are non-negative integers, has no solution in non-negative integers.

Proof: There are three cases:

Case: 1 If x = 0 then the Diophantine equation $181^{x} + 199^{y} = z^{2}$ becomes

 $1 + 199^y = z^2$, which has no non-negative integer solution by lemma 2.

Case: 2 If y = 0 then the Diophantine equation $181^x + 199^y = z^2$ becomes $181^x + 1 = z^2$, which has no non-negative integer solution by lemma 1.

Case: 3 If x, y are positive integers, then 181^x , 199^y are odd numbers.

 $\Rightarrow 181^x + 199^y = z^2$ is an even number

 \Rightarrow *z* is an even number

 $\Rightarrow z^2 \equiv 0 \pmod{3} \text{ or } z^2 \equiv 1 \pmod{3} \tag{5}$

Now, $181 \equiv 1 \pmod{3}$

 $\Rightarrow 181^x \equiv 1 \pmod{3}$ and $199 \equiv 1 \pmod{3}$

$$\Rightarrow 181^x \equiv 1 \pmod{3}$$
 and $199^y \equiv 1 \pmod{3}$

 $\Rightarrow 181^x + 199^y \equiv 2(mod3)$

$$\Rightarrow z^2 \equiv 2(mod3) \tag{6}$$

Equation (6) contradicts equation (5). Hence Diophantine equation $181^{x} + 199^{y} = z^{2}$ has no non-negative integer solution.

III. CONCLUSION

In this article, authors successfully discussed the solution of Diophantine equation $181^x + 199^y = z^2$, where *x*, *y*, *z* are non-negative integers and determined that this equation has no non-negative integer solution.

CONFLICT OF INTERESTS

Authors state that this paper has no conflict of interest.

REFERENCES

- [1] Acu, D. (2007) On a Diophantine equation $2^x + 5^y = z^2$, General Mathematics, 15(4), 145-148.
- [2] Kumar, S., Gupta, S. and Kishan, H. (2018) On the non-linear Diophantine equations $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$, Annals of Pure and Applied Mathematics, 18(1), 91-94.
- [3] Kumar, S., Gupta, D. and Kishan, H. (2018) On the non-linear Diophantine equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$, Annals of Pure and Applied Mathematics, 18(2), 185-188.
- [4] Mordell, L.J. (1969) Diophantine equations, Academic Press, London, New York.
- [5] Rabago, J.F.T. (2013) On an open problem by B. Sroysang, Konuralp Journal of Mathematics, 1(2), 30-32.
- [6] Sierpinski, W. (1964) Elementary theory of numbers, Warszawa.
- [7] Sroysang, B. (2012) More on the Diophantine equation $8^x + 19^y = z^2$, International Journal of Pure and Applied Mathematics, 81(4), 601-604.
- [8] Sroysang, B. (2014) On the Diophantine equation $8^x + 13^y = z^2$, International Journal of Pure and Applied Mathematics, 90(1), 69-72.
- [9] Sroysang, B. (2012) On the Diophantine equation $31^x + 32^y = z^2$, International Journal of Pure and Applied Mathematics, 81(4), 609-612.