On The Existence of Solution of Diophantine Equation $181^{x}+199^{y}=z^{2}$

Sudhanshu Aggarwal ${ }^{1 *}$, Swarg Deep Sharma ${ }^{2}$, Aakansha Vyas ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Mathematics, National P.G. College, Barhalganj, Gorakhpur-273402, U.P., India
${ }^{2}$ Assistant Professor, Department of Mathematics, Nand Lal Singh College Jaitpur Daudpur Constituent of Jai Prakash University Chhapra-841205, Bihar, India
${ }^{3}$ Assistant Professor, Noida Institute of Engineering \& Technology, Greater Noida-201306, U.P., India

Abstract

In this article, authors discussed the existence of solution of Diophantine equation $181^{x}+199^{y}=z^{2}$, where x, y, z are non-negative integers. Results show that the consider Diophantine equation of study has no non-negative integer solution.

Keywords: Prime number; Diophantine equation; Solution, Integers.

Mathematics Subject Classification: 11D61, 11D72, 11D45.

I. INTRODUCTION

Diophantine equations are those equations of theory of numbers which are to be solved in integers. Diophantine equations have many important applications in algebra, analytical geometry and trigonometry [4, 6]. These equations give us an idea to prove the existence of irrational numbers. Acu [1] studied the Diophantine equation $2^{x}+5^{y}=z^{2}$ and proved that $\{x=3, y=0, z=3\}$ and $\{x=2, y=1, z=3\}$ are the solutions of this equation. Kumar et al. [2] considered the non-linear Diophantine equations $61^{x}+67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$. They showed that these equations have no non-negative integer solution. Kumar et al. [3] studied the non-linear Diophantine equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+$ $71^{y}=z^{2}$. They determined that these equations have no nonnegative integer solution. Rabago [5] discussed the open problem given by B. Sroysang. He showed that the Diophantine equation $8^{x}+p^{y}=z^{2}$, where x, y, z are positive integers has only three solutions namely $\{x=1, y=1, z=$ $5\}, \quad\{x=2, y=1, z=9\}$ and $\{x=3, y=1, z=23\}$ for $p=17$. The Diophantine equations $8^{x}+19^{y}=z^{2}$ and $8^{x}+13^{y}=z^{2}$ were studied by Sroysang [7-8]. He proved that these equations have a unique non-negative integer solution namely $\{x=1, y=0, z=3\}$. Sroysang [9] proved that the Diophantine equation $31^{x}+32^{y}=z^{2}$ has no nonnegative integer solution.
The main aim of this article is to discuss the existence of solution of Diophantine equation $181^{x}+199^{y}=z^{2}$, where x, y, z are non-negative integers.

II. PRELIMINARIES

Lemma: 1 The Diophantine equation $181^{x}+1=z^{2}$, where x, z are non-negative integers, has no solution in non-negative integers.

Proof: Since 181 is an odd prime so 181^{x} is an odd number for all non-negative integer x.
$\Rightarrow 181^{x}+1=z^{2}$ is an even number for all non-negative integer x.
$\Rightarrow z$ is an even number.
$\Rightarrow z^{2} \equiv 0(\bmod 3)$ or $z^{2} \equiv 1(\bmod 3)$
Now, $181 \equiv 1(\bmod 3)$
$\Rightarrow 181^{x} \equiv 1(\bmod 3)$, for all non-negative integer x
$\Rightarrow 181^{x}+1 \equiv 2(\bmod 3)$, for all non-negative integer x
$\Rightarrow z^{2} \equiv 2(\bmod 3)$
Equation (2) contradicts equation (1). Hence Diophantine equation $181^{x}+1=z^{2}$ has no non-negative integer solution.

Lemma: 2 The Diophantine equation $199^{y}+1=z^{2}$, where y, z are for all non-negative integers, has no solution in nonnegative integers.
Proof: Since 199 is an odd prime so 199^{y} is an odd number for all non-negative integer y.
$\Rightarrow 199^{y}+1=z^{2}$ is an even number for all non-negative integer y
$\Rightarrow z$ is an even number
$\Rightarrow z^{2} \equiv 0(\bmod 3)$ or $z^{2} \equiv 1(\bmod 3)$
Now, $199 \equiv 1(\bmod 3)$
$\Rightarrow 199^{y} \equiv 1(\bmod 3)$, for all non-negative integer y
$\Rightarrow 199^{y}+1 \equiv 2(\bmod 3)$, for all non-negative integer y
$\Rightarrow z^{2} \equiv 2(\bmod 3)$
Equation (4) contradicts equation (3). Hence Diophantine equation $199^{y}+1=z^{2}$ has no non-negative integer solution.

Main Theorem: The Diophantine equation $181^{x}+199^{y}=$ z^{2}, where x, y, z are non-negative integers, has no solution in non-negative integers.

Proof: There are three cases:
Case: 1 If $x=0$ then the Diophantine equation $181^{x}+$ $199^{y}=z^{2}$ becomes
$1+199^{y}=z^{2}$, which has no non-negative integer solution by lemma 2 .

Case: 2 If $y=0$ then the Diophantine equation $181^{x}+$ $199^{y}=z^{2}$ becomes $181^{x}+1=z^{2}$, which has no nonnegative integer solution by lemma 1 .
Case: 3 If x, y are positive integers, then $181^{x}, 199^{y}$ are odd numbers.
$\Rightarrow 181^{x}+199^{y}=z^{2}$ is an even number
$\Rightarrow z$ is an even number
$\Rightarrow z^{2} \equiv 0(\bmod 3)$ or $z^{2} \equiv 1(\bmod 3)$
Now, $181 \equiv 1(\bmod 3)$
$\Rightarrow 181^{x} \equiv 1(\bmod 3)$ and $199 \equiv 1(\bmod 3)$
$\Rightarrow 181^{x} \equiv 1(\bmod 3)$ and $199^{y} \equiv 1(\bmod 3)$
$\Rightarrow 181^{x}+199^{y} \equiv 2(\bmod 3)$
$\Rightarrow z^{2} \equiv 2(\bmod 3)$
Equation (6) contradicts equation (5). Hence Diophantine equation $181^{x}+199^{y}=z^{2}$ has no non-negative integer solution.

III. CONCLUSION

In this article, authors successfully discussed the solution of Diophantine equation $181^{x}+199^{y}=z^{2}$, where x, y, z are non-negative integers and determined that this equation has no non-negative integer solution.

CONFLICT OF INTERESTS

Authors state that this paper has no conflict of interest.

REFERENCES

[1] Acu, D. (2007) On a Diophantine equation $2^{x}+5^{y}=z^{2}$, General Mathematics, 15(4), 145-148.
[2] Kumar, S., Gupta, S. and Kishan, H. (2018) On the non-linear Diophantine equations $61^{x}+67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(1), 91-94.
[3] Kumar, S., Gupta, D. and Kishan, H. (2018) On the non-linear Diophantine equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+71^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(2), 185-188.
[4] Mordell, L.J. (1969) Diophantine equations, Academic Press, London, New York.
[5] Rabago, J.F.T. (2013) On an open problem by B. Sroysang, Konuralp Journal of Mathematics, 1(2), 30-32.
[6] Sierpinski, W. (1964) Elementary theory of numbers, Warszawa.
[7] Sroysang, B. (2012) More on the Diophantine equation $8^{x}+$ $19^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81(4), 601-604.
[8] Sroysang, B. (2014) On the Diophantine equation $8^{x}+13^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 90(1), 6972.
[9] Sroysang, B. (2012) On the Diophantine equation $31^{x}+32^{y}=$ z^{2}, International Journal of Pure and Applied Mathematics, 81(4), 609-612.

